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Phenotyping for physiological breeding and gene discovery in wheat.
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Approaches that can be used to increase rates of genetic gains in stress breeding include (i) strategic, trait-based crossing 
to combine complementary traits in progeny, (ii) high-throughput phenotyping and genotyping to enrich for desirable 
alleles in early generations, and (iii) exploring genetic resources to broaden the genetic base.  Using a combination of 
the above approaches, CIMMYT has released drought-adapted germ plasm that shows superior expression of a range 
of complementary physiological traits deriving from both conventional sources and landraces and wild relatives.  New 
genetic technologies are expected to further accelerate the potential for genetic gains, however, one of the current bottle-
necks is precision phenotyping.  For gene discovery within mapping populations, high-throughput phenotyping tech-
niques such as thermal imaging for canopy temperature and spectral reflectance for ground cover and stem carbohydrates 
permit large numbers of genotypes to be screened with high efficiency.  Confounding factors still need to be resolved in 
studies where genes of major effect are not controlled.  Major genes not only affect the crop’s morphology but also may 
lead to interactions between phenology and, for example, availability of soil water at key growth stages.  These factors 
may cause QTL to be falsely identified and complice the already difficult challenge of dissecting ‘genotype x environ-
ment’ interaction.  New generations of mapping populations are being developed that contrast in drought-adaptive traits 
but not in flowering time or height.  However, progeny of bi-parental crosses still encompass the problem that transgres-
sive segregation of parental alleles usually result in some agronomically inferior genotypes and, therefore, alleles long 
since excluded in plant breeding may mask more subtle effects.  Association genetics provides a potential alternative 
where genetically diverse but elite cultivars can be used for gene discovery.

Evolution of wheat genomes.
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The DNA sequences of wheat A, B, and D Acc homoeoloci were analyzed with a view to understanding the evolution of 
the Acc-1 and Acc-2 genes and the origin and evolution of the three genomes in modern hexaploid wheat.  The 2.3–2.4 
million years ago (MYA) divergence time calculated for the three homoeologous chromosomes, based on coding and 
intron sequences of the Acc-1 genes, is at the low end of other estimates.  Our clock was calibrated using 60 MYA for the 
divergence between wheat and maize.  On the same time scale, wheat diverged from barley and rice 11.6 MYA and 50 
MYA, respectively, based on sequences of Acc and other genes.  The regions flanking the Acc genes are not conserved 
between the A, B, and D genomes, but they are conserved among them.  Substitution rates in intergenic regions consist-
ing primarily of repetitive sequences vary substantially along the loci and are, on average, 3.5-fold higher than the Acc 
intron substitution rates.  The composition of the Acc homoeoloci suggests haplotype divergence exceeding 0.5 MYA, in 
some cases.  Such variation might result in a significant overestimate of the time since tetraploid wheat formation, which 
occurred no more than 0.5 MYA.


