ࡱ>  O{bjbj E3Z 77777KKK8$Kz|K%5'K'K'K'()4I)-//////$NS7oe((oeoeS77K'K'44oe"7K'7K'-oe-K'в+K dJ0zo,7le)>L X e)e)e)SSe)e)e)zoeoeoeoee)e)e)e)e)e)e)e)e) : REPORTS OF THE COORDINATORS Overall coordinators report Udda Lundqvist Nordic Genetic Resource Center P.O. Box 41, SE 230 53 Alnarp, Sweden e-mail:  HYPERLINK "mailto:udda@nordgen.org" udda@nordgen.org Since the latest overall coordinators report in Barley Genetics Newsletter Volume 38 not many changes of the coordinators took place. As Mark Sutherland, Australia who should take care of the coordination of the disease and pest resistant genes is so engaged with administration work at his university, we had to find a successor. Professor Frank Ordon from Germany is willing to take over. I wish him welcome to our group. Several research groups world-wide are working with Single Nucleotide Polymorphism (SNP) genotyping and are using induced mutants from different Gene Banks. Good results have already been published in many publications as different reports are dealing with. About 950 different near isogenic lines (NIL) that are established by J.D. Franckowiak, now working in Australia, are an extraordinary source for this genotyping. During the summer of 2009 about half of these lines have been increased and propagated in Sweden in order to incorporate them in the Nordic Genetic Resource Center (Nordgen), Alnarp, Sweden. The other part will be increased during the summer of 2010 in Sweden. It has been decided to establish an International Centre for Barley Genetics Stocks at Nordgen, Sweden. Some of us had the opportunity to participate the 14th Australian Barley Technical Symposium at the Sunshine Coast of Queensland, Australia, during september 2009. Several sessions dealed with economics production, quality, biotechnology and future research and production in variable environments of malt and feed barley. Also important presentations were on pest and disease resistant problems and the control of biotic and abiotic stresses. It was very interesting to learn that Australia is fighting with complete other breeding problems to release cultivars than what we have to do in Europe. Especially drought is a large problem in the early season of barley cultivation. List of Barley Coordinators Chromoosome 1H (5): Gunter Backes, The University of Copenhagen, Faculty of Life Science, Department of Agricultural Sciences, Thorvaldsensvej 40, DK-1871 Fredriksberg C, Denmark. FAX: +45 3528 3468; e-mail: Chromosome 2H (2): Jerry. D. Franckowiak, Hermitage Research Station, Agri-science Queensland, Department of Employment, Economic Development and Innovation, Warwick, Queensland 4370, Australia, FAX: +61 7 4660 3600; e-mail: Chromosome 3H (3): Luke Ramsey, Genetics Programme, Scottish Crop Research Institute, Invergowrie, Dundee, DD2 5DA, United Kingdom. FAX: +44 1382 562426. E-mail: Chromosome 4H (4): Arnis Druka, Genetics Programme, Scottish Crop Research Institute, Invergowrie, Dundee, DD2 5DA, United Kingdom. FAX: +44 1382 562426. e-mail: Chromosome 5H (7): George Fedak, Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, ECORC, Ottawa, ON, Canada K1A 0C6, FAX: +1 613 759 6559; e-mail: Chromosome 6H (6): Victoria Carollo Blake, Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA.e-mail: Chromosome 7H (1): Lynn Dahleen, USDA-ARS, State University Station, P.O. Box 5677, Fargo, ND 58105, USA. FAX: + 1 701 239 1369; e-mail: Integration of molecular and morphological marker maps: David Marshall, Genetics Programme, Scottish Crop Research Institute, Invergowrie, Dundee, DD2 5DA, United Kingdom. FAX: 44 1382 562426. e-mail: Barley Genetics Stock Center: Harold Bockelman, USDA-ARS, National Small Grains Germplasm Research Facility, 1691 S. 2700 W., Aberdeen, ID 83210, USA. FAX: +1 208 397 4165; e-mail: Trisomic and aneuploid stocks: Harold Bockelman, USDA-ARS, National Small Grains Germplasm Research Facility, 1691 S. 2700 W., Aberdeen, ID 83210, USA. FAX: +1 208 397 4165; e-mail: Translocations and balanced tertiary trisomics: Andreas Houben, Institute of Plant Genetics and Crop Plant Research, Corrensstrasse 3, DE-06466 Gatersleben, Germany. FAX: +49 39482 5137; e-mail: List of Barley Coordinators (continued) Desynaptic genes: Andreas Houben, Institute of Plant Genetics and Crop Plant Research, Corrensstrasse 3, DE-06466 Gatersleben, Germany. FAX: +49 39482 5137; e-mail: Autotetraploids: Wolfgang Friedt, Institute of Crop Science and Plant Breeding, Justus-Liebig-University, Heinrich-Buff-Ring 26-32, DE-35392 Giessen, Germany. FAX: +49 641 9937429; e-mail: Disease and pest resistance genes: Frank Ordon, Julius Khn Institute (JKI), Institute for Resistance Research and Stress Tolerance, Erwin-Baur-Strasse 27, DE-06484 Quedlinburg, Germany. e-mail: Eceriferum genes: Udda Lundqvist, Nordic Genetic Resource Center, P.O. Box 41, SE-230 53 Alnarp, Sweden. FAX:.+46 40 536650; e-mail: < udda@nordgen.org> Chloroplast genes: Mats Hansson, Carlsberg Research Center, Gamle Carlsberg vej 10, DK-2500 Valby, Copenhagen Denmark. e-mail: Genetic male sterile genes: Mario C. Therrien, Agriculture and Agri-Food Canada, P.O. Box 1000A, R.R. #3, Brandon, MB, Canada R7A 5Y3, FAX: +1 204 728 3858; e-mail: Ear morphology genes: Udda Lundqvist, Nordic Genetic Resource Center, P.O. Box 41, SE-230 53 Alnarp, Sweden. FAX: +46 40 536650; e-mail: < HYPERLINK "mailto: udda@nordgen.org"  udda@nordgen.org> or Antonio Michele Stanca: Istituto Sperimentale per la Cerealicoltura, Sezione di Fiorenzuola dArda, Via Protaso 302, IT-29017 Fiorenzuola dArda (PC), Italy. FAX +39 0523 983750, e-mail: 40 536650 Semi-dwarf genes: Jerry D. Franckowiak, Hermitage Research Station, Agri-science Queensland, Department of Employment, Economic Development and Innovation, Warwick, Queensland 4370, Australia, FAX: +61 7 4660 3600; e-mail: < jerome.franckowiak@deedi.qld.gpv.au > Early maturity genes: Udda Lundqvist, Nordic Genetic Resource Center, P.O. Box 41, SE-230 53 Alnarp, Sweden. FAX: +46 40 536650; e-mail: Barley-wheat genetic stocks: A.K.M.R. Islam, Department of Plant Science, Waite Agricultural Research Institute, The University of Adelaide, Glen Osmond, S.A. 5064, Australia. FAX: +61 8 8303 7109; e-mail: Coordinators Report: Barley Chromosome 1H (5) Gunter Backes The University of Copenhagen Faculty of Life Sciences Department of Agricultural Sciences Thorvaldsensvej 40 DK-1871 Frederiksberg C, Denmark e-mail: guba@life.ku.dk A member of the cellulose synthase-like gene family, HvCslF9 was localized to chromosome 1H, bin 7 (Burton et al., 2008). The family includes seven genes in barley and there is evidence that the gene is involved in the synthesis of -glucan. In a doubled haploid population (100 lines) from a cross between the two-row spring barley line BCD47 and the variety  Baronesse , on chromosome 1H, bin 3/4, a QTL affecting both heading date (LOD 2.1 2.9), photoperiod response (LOD 1.7), physiological maturity (LOD 1.8) and grain filling period (LOD 1.4) was localized (Castro et al., 2008). The phenotyping was based on eight field experiments covering three years. Besides, two major QTLs for heading date and physiological maturity explained most of the phenotypic variation. A QTL for heading date, when sown in autumn in four field experiments, and for short photoperiod, measured in two green house experiments, was localized to 1H, bin 11 (Cuesta-Marcos et al., 2008a). The localisation was carried out in 120 doubled haploid lines from a cross between the French two-row cultivars Beka and Mogador. Ppd-H2 might be a candidate gene for this QTL. Fifteen small interconnected doubled haploid populations (7 to 20 lines each, adding up to 281 lines in total), were cultivated under the same conditions as the population described in the precedent paragraph. In the field experiments, the heading date was measured, while in the greenhouse experiment, Cuesta-Marcos et al. (2008b) determined the number of leaves. Again, on chromosome 1H, bin 11, a QTL, likely representing Ppd-H2, affected both traits. Verhoeven et al., 2008 were interested in the habitat-specific selection on heading-date related QTLs. For this purpose, they tested 140 F2:3 families from a cross between two wild barley lines (Hordeum vulgare ssp. spontaneum) originating from two different environments. They tested the lines in different controlled and natural environments and localized relatively large overlapping areas affecting seed weight (measured in field experiments) and relative growth rate (measured in a green house experiment) on chromosome 1H. In an association study using a population consisting of 83 barley landraces, 44 old genotypes and 65 modern genotypes from within the Mediterranean basin, Pswarayi et al., 2008 detected associations for grain yield in bin 2 and bin 8 of chromosome 1H. The experiment was carried out in Spain (one year) and Syria (two years) on two locations with high and low yield potential, respectively. Both mentioned associations were detected in the low-yield environment in Syria. A QTL for coleoptiles elongation under uncovered darkness (LOD 3.9) was found by Takahashi et al. (Takahashi et al., 2008) on chromosome 1H, bin 14. The authors phenotyped 150 doubled haploid lines from the Harrington/TR306 population in pot experiments. Ulrich et al. (Ullrich et al., 2008) analyzed 150 doubled haploid lines from Steptoe/Morex for pre-harvest sprouting. They found a QTL for germination percentage on chromosome 1H, bin 14, with an LR of 12. The ears from plants grown in one field and one green house environment were treated for five days in a mist chamber. In two doubled haploid populations, one including 92 lines from the cross TX0425/Franklin and one including 177 lines from the cross Yerong/Franklin, Li et al. (2008) searched for QTLs related to waterlogging tolerance. In TX0425/Franklin, they detected a QTL for chlorosis after two weeks of waterlogging on chromosome 1H bin 6/7 (LOD 2.8). In the population derived from Yerong/Franklin they detected another QTL effecting leaf yellowing after 2 weeks of waterlogging in bin 8/9 (LOD 2.8). In an greenhouse experiment with well-watered and drought-stress treatments Guo et al. (2008) measured different chlorophyll-related traits on 194 recombinant inbred lines originating from a cross between Arta and the wild barley (Hordeum vulgare ssp. spontaneum) line 41-1. On chromosome 1H, a QTL for initial photosynthesis was discovered in bin 11 (LOD 2.8). Another experiment dealing with drought related trait was carried out as a field experiment with four Mediterranean locations in two years on 158 recombinant inbred lines from the cross Tadmor/ER/Apm (von Korff et al., 2008a). Several traits related to drought stress, plant morphology and development were observed. On chromosome 1H, five QTLs were observed: in bin 7 and 8 two QTLs affecting heading date (F-values 12.1 and 20.8, respectively), in bin 9 a QTL affecting spike length (F-value 15.7), in bin 12 a QTL affecting both growth vigour and days to maturity (F-values 19.5 and 31.4, respectively) and in bin 14 a QTL affecting the grain filling period (F-value 20.8). In an advanced back-cross population (301 BC2DH lines) originating from a cross between Scarlett and the wild barley (H. vulgare ssp. spontaneum) line ISR42-8, von Korff et al. (2008b) analyzed malting quality traits on kernels harvested from four locations through two years. Six QTLs were detected on chromosome 1H: in bin 3 a QTL for protein content, (F-value 11), in bin 3/4 a QTL for -amylase activity (F-value 11), in bin 4 a QTL for malt extract (F-value 16.3), in bin 6-8 a QTL for friability and protein content (F-values 153 and 59, respectively), in bin 6-9 a QTL for viscosity, in bin 7 another QTL for malt extract (F-value 45), in bin 10 a QTL for friability and viscosity (F-value 23 and 15, respectively) and in bin 13 another QTL for protein content. For the last-mentioned QTL the wild barley contributed the advantageous allele. Two major QTLs for resistance against spot blotch, caused by Cochliobolus sativus, were localized by Kuldeep et al. (2008) on chromosome 1H of barley. One was localized in bin 6/7 (LOD 9.0) and one was localized in bin 6/7 (LOD 18.9). A further QTL was localized on chromosome 7H. The analysis was carried out in field experiments (one location, 3 years) on a population of 200 recombinant inbred lines (F5 - F7) from a cross between the resistant line IBON 18 and the susceptible line RD 2508. The QTL locus Rphq21 conferring resistance against leaf rust, caused by Puccinia hordei, was located on chromosome 1H, bin 5/6 by Marcel et al. (2008). The resistance was effective against one out of 4 isolates in the seedling stage of barley. It was localized with an LOD of 3.9 in a population of 103 recombinant inbred lines (F9) from the cross L94/Vada. Jafary et al. (2008) studied non-host resistance in barley against heterologous rust fungi. For this purpose, they infected two different populations of barley with Puccinia triticina, P. persistens, P. hordei-murini and P. hordei-secalini. On chromosome 1H, two QTLs conferring resistance against P. hordei-murini were localized. In the population consisting of 113 recombinant inbred lines (F9) from the cross SusPtrit/Cepada Capa a QTL in bin 2-4 was detected and in the other population, consisting of 92 doubled haploid lines from the Oregon-Wolfe Barley population, a QTL in bin 6-8 was found. References: Burton, R.A., S.A. Jobling, A.J. Harvey, N.J. Shirley, D.E. Mather, A. Bacic and G.B. Fincher, 2008. The genetics and transcriptional profiles of the cellulose synthase-like HvCslF gene family in barley. Plant Physiol. 146: 1821-1833. Castro, A.J., P.M. Hayes, L. Viega and I. Vales, 2008. Transgressive segregation for phenological traits in barley explained by two major QTL alleles with additivity. Plant Breed. 127: 561-568. Cuesta-Marcos, A., E. Igartua, F.J. Ciudad, P. Codesal, J.R. Russell, J.L. Molina-Cano, M. Moralejo, P. Szcs, M.P. Gracia, J.M. Lasa and A.M. Casas, 2008a. Heading date QTL in a spring x winter barley cross evaluated in Mediterranean environments. Mol. Breed. 21: 455-471. Cuesta-Marcos, A., A.M. Casas, S. Yahiaoui, M.P. Gracia, J.M. Lasa and E. Igartua, 2008b. Joint analysis for heading date QTL in small interconnected barley populations. Mol. Breed. 21: 383-399. Guo, P.G., M. Baum, R.K. Varshney, A. Graner, S. Grando and S. Ceccarelli, 2008. QTLs for chlorophyll and chlorophyll fluorescence parameters in barley under post-flowering drought. Euphytica 163: 203-214. Jafary, H., G. Albertazzi, T.C. Marcel and R.E. Niks, 2008. High diversity of genes for nonhost resistance of barley to heterologous rust fungi. Genetics 178: 2327-2339. Kuldeep, T., R. Nandan, U. Kumar, L.C. Prasad, R. Chand and A.K. Joshi, 2008. Inheritance and identification of molecular markers associated with spot blotch (Cochliobolus sativus L.) resistance through microsatellites analysis in barley. Genet. Mol. Biol. 31: 734-742. Li, H.B., R. Vaillancourt, N. Mendham and M.X. Zhou, 2008. Comparative mapping of quantitative trait loci associated with waterlogging tolerance in barley (Hordeum vulgare L.). BMC Genom. 9: 401. Marcel, T.C., B. Gorguet, M.T. Ta, Z. Kohutova, A. Vels and R.E. Niks, 2008. Isolate specificity of quantitative trait loci for partial resistance of barley to Puccinia hordei confirmed in mapping populations and near-isogenic lines. New Phytologist 177: 743-755. Pswarayi, A., F.A. van Eeuwijk, S. Ceccarelli, S. Grando, J. Comadran, J.R. Russell, N. Pecchioni, A. Tondelli, T. Akar, A. Al-Yassin, A. Benbelkacem, H. Ouabbou, W.T.B. Thomas and I. Romagosa, 2008. Changes in allele frequencies in landraces, old and modern barley cultivars of marker loci close to QTL for grain yield under high and low input conditions. Euphytica 163: 435-447. Takahashi, H., M. Noda, K. Sakurai, A. Watanabe, H. Akagi, K. Sato and K. Takeda, 2008. QTLs in barley controlling seedling elongation of deep-sown seeds. Euphytica 164: 761-768. Ullrich, S.E., J.A. Clancy, I.A. del Blanco, H.J. Lee, V.A. Jitkov, F. Han, A. Kleinhofs and K. Matsui, 2008. Genetic analysis of preharvest sprouting in a six-row barley cross. Mol. Breed. 21: 249-259. Verhoeven, K.J.F., H. Poorter, E. Nevo and A. Biere, 2008. Habitat-specific natural selection at a flowering-time QTL is a main driver of local adaptation in two wild barley populations. Mol. Ecol. 17: 3416-3424. von Korff, M., S. Grando, A. Del Greco, D. This, M. Baum and S. Ceccarelli, 2008a. Quantitative trait loci associated with adaptation to Mediterranean dryland conditions in barley. Theor. Appl. Genet. 117: 653-669. von Korff, M., H.J. Wang, J. Lon and K. Pillen, 2008b. AB-QTL analysis in spring barley: III. Identification of exotic alleles for the improvement of malting quality in spring barley (H. vulgare ssp. spontaneum). Mol. Breed. 21: 81-93. Coordinators report: Chromosome 2H (2) J.D. Franckowiak Hermitage Research Station Agri-science Queensland Department of Employment, Economic Development and Innovation Warwick, Queensland 4370, Australia e-mail:  HYPERLINK "mailto:jerome.franckowiak@deedi.qld.gov.au" jerome.franckowiak@deedi.qld.gov.au Three genes [Ppd-H1 (synonym Eam1 on 2HS), HvCO1 (synonym Vrn-H3 on 7HS), and HvFT1 (positional associated with esp7S on 7HS)] known to play essential roles in the regulation of flowering time under long days in barley were analyzed for nucleotide diversity in a collection of 220 spring barley accessions by Stracke et al. (2009). The coding region of Ppd-H1 was highly diverse, while both HvCO1 and HvFT1 showed a rather limited level of diversity. The Ppd-H1 alleles (the late flowering haplotype was more common than the five early haplotypes combined) were strongly associated with flowering time across four environments, showing a difference of five to ten days between the most extreme haplotypes. The association between flowering time and the variation at HvFT1 and HvCO1 was strongly dependent on the haplotype present at Ppd-H1. Karsai et al. (2008) examined the interaction of vernalization (Vrn) and photoperiod sensitivity (Ppd) genes in progenies variable winter and spring growth habits under various thermo- and photoperiods. Alleles at the Ppd-H1 (Eam1 on 2HS) locus were found to interact with alleles for spring growth habit at the Vrn-H1 (Sgh2 on 5HL) locus. Certain allele combinations at these two loci interacted with alleles at the Ppd-H2 (1HL) locus under various thermo- and photoperiods to produce short-day photoperiod responses, when the dominant allele at the Ppd-H1 locus was absent. Custa-Marcos et al. (2009) studied the genetic control of flowering time under Northern Spanish (Mediterranean) conditions using a new population derived from the spring x winter cross Beka x Mogador. A set of 120 doubled haploid lines was evaluated in the field, and under controlled temperature and photoperiod conditions. Genotyping included markers for vernalization candidate genes: HvBM5 (Vrn-H1 on 5HL), HvZCCT (Vrn-H2 on 4HL), and HvT SNP22 (Ppd-H1 on 2HS). Four major QTL, and the interactions between them, accounted for most of the variation in both field (71 to 92%) and greenhouse trials (55 to 86%). These were coincident with the location of the major genes for response to vernalization and a gene for short photoperiod response (Ppd-H2 on 1HL). A major QTL, near the centromere of chromosome 2H (Eam6 or eps2S), was the most important under autumn sowing conditions. Although it was detected under all conditions, its action seemed dependent on environmental cues. The presence of the winter Mogador allele at the two loci combined with the effect of Ppd-H2 was found to cause short-day vernalization. Mittal et al. (2008) reported response to Russian wheat aphid (RWA, Diuraphis noxia Kurdjumov) infestations was associated with a minor QTL on 2H near marker GBM1523, which explained 6% of the variation. The RWA feeding damage results were based on testing of 191 F2derived F3 families from the cross Morex x STARS-9301B where Morex is a susceptible six-rowed malting barley and STARS-9301B is a selection from RWA-resistant Afghanistan introduction PI 366450. Roslinsky et al. (2007) reported markers for low phytate genes. Seed homozygous for low phytic acid 1-1 (lpa1-1) or low phytic acid 2-1 (lpa2-1) has a 50 and 70% decrease in seed phytate, respectively. These mutations were previously mapped to chromosomes 2HL and 7HL respectively. They converted RFLP marker ABC153 located in the same region of 2H as lpa1-1 to a sequence-characterized-amplified-region (SCAR) marker. Segregation analysis of the CDC McGwire Lp422 doubled haploid population confirmed linkage between the SCAR marker and the lpa1-1 locus with 15% recombination. Palmer et al. (2009) describe archaeobotanical samples of barley found at Qasr Ibrim as having a two-rowed phenotype that is unique to the region of archaeological sites upriver of the first cataract of the Nile. The pictured spike set little or no seed in the lateral spikelets and shows lateral bracts (spikelets) that are typical of intermediates between two- and six-rowed spikes. This phenotype was reported to occur throughout all strata at Qasr Ibrim, which range in age from 3000 to a few hundred years. Palmer et al. (2009) extracted ancient DNA from barley samples from the entire range of occupancy of the site and studied the Vrs1 locus on 2HL that is responsible for row number. They found a genotype that is consistent with the six-rowed condition. These results indicate a six-rowed ancestry for the Qasr Ibrim barley, but a loss of lateral fertility, possibly caused by alleles at the Int-c locus. The consistency of this genotype/phenotype discord over time supports a scenario of adoption of this barley type by successive cultures. Genetic diversity of 33 Qinghai-Tibetan wild barley accessions and 56 landraces collected primarily from other parts of China was evaluated with 52 SSR markers by Gong et al. (2009). At the 52 SSR loci, 206 alleles were detected of which 111 were common alleles. Polymorphism information content (PIC) values ranged from 0 to 0.81 with an average of 0.54 for Qinghai-Tibetan wild barley and 0 to 0.79 with an average of 0.49 for landraces. Twenty-four unique alleles were observed in Qinghai-Tibetan wild barley, and the frequency of unique alleles in Qinghai-Tibetan wild barley was about 2.1 times higher than that in the landraces. Only chromosome 2H had more unique alleles in the landraces. Chen et al. (2009b) studied mechanisms for low temperature tolerance in reproductive tissues (LTR tolerance) in barley using Amagi Nijo x WI2585 and Haruna Nijo x Galleon populations. Flowering time and spike morphology traits were associated with the LTR tolerance loci. In spring-type progeny of both crosses, winter alleles at the vernalization response locus on 5HL (Vrn-H1) were linked in coupling with LTR tolerance and earlier flowering. In contrast, tolerance on 2HL was coupled with late flowering alleles at a locus named Flt-2L. Both chromosome regions influenced chasmogamy/cleistogamy (open/closed florets), although tolerance was associated with cleistogamy at the 2HL locus and chasmogamy at the 5HL locus. LTR tolerance controlled by both loci was accompanied by shorter spikes, fewer florets per spike on 5HL (possibly Eam5) and shorter rachis internodes on 2HL (possibly Zeo2). The Eps-2S or Eam6 locus on 2HS segregated in both crosses and influenced spike length and flowering time but not LTR tolerance. Thus, none of the traits was consistently correlated with LTR tolerance. Chen et al. (2009a) identified a major gene-rich region on the end of the long arm of Triticeae group 2 chromosomes that exhibits high recombination frequencies, making it an attractive region for positional cloning. Traits known to be controlled by this region include chasmogamy/cleistogamy, frost tolerance at flowering, grain yield, head architecture, and resistance to Fusarium head blight and rusts. To assist these cloning efforts, detailed genetic maps of barley chromosome 2H, including 61 polymerase chain reaction markers, were constructed. Collinearity with rice occurred in eight distinct blocks, including five blocks in the terminal gene-rich region. Sequencing across 91 gene fragments totaling 107 kb from four barley genotypes revealed the highest single nucleotide substitution and insertion-deletion polymorphism levels in the terminal regions of the chromosome arms. Guo et al. (2008) analyzed the quantitative trait loci (QTL) controlling chlorophyll content and chlorophyll fluorescence in RILs developed from the cross between Arta and Hordeum spontaneum 41-1. Five traits, chlorophyll content, and four chlorophyll fluorescence parameters, namely initial fluorescence (Fo), maximum fluorescence (Fm), variable fluorescence (Fv), and maximum quantum efficiency of PSII (Fv/Fm) which are related to the activity of the photosynthetic apparatus, were measured under well-watered and drought stress conditions at post-flowering stage. QTL analysis identified a total of nine and five genomic regions, under well watered and drought stress conditions, respectively. No common QTL was detected except one for chlorophyll content. The desirable QTL under drought were from Arta. A QTL for Fv/Fm, which is related to the drought tolerance of photosynthesis, was identified on 2H at 116 cM. In addition, another QTL for Fv/Fm was also located on 2H at 135.7 cM. Guo et al. (2008) suggest that two major loci on 2H are involved in the development of functional chloroplast at post-flowering stage for drought tolerance of photosynthesis in barley under drought stress To understand genetic patterns of the morphological and physiological traits in flag leaf of barley, a DH population derived from Yerong (six-rowed) x Franklin (two-rowed) was used by Xue et al. (2008) to determine QTL controlling length, width, length/width, and chlorophyll content of flag leaves. A total of 9 QTL showing significantly additive effect were detected in 8 intervals on 5 chromosomes. The variation of individual QTL ranged from 1.9 to 20.2%. For chlorophyll content expressed as SPAD value, 4 QTL were identified on chromosomes 2H, 3H and 6H; for leaf length and width, 2 QTL located on chromosomes 5H and 7H, and 2 QTL located on chromosome 5H were detected; and for length/width, 1 QTL was detected on chromosome 7H. The two QTL for chlorophyll content detected on 2H were at different positions than those reported by Guo et al. (2008). References:  HYPERLINK "http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Chen%20A%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus" Chen, A., A.  HYPERLINK "http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Br%C3%BBl%C3%A9-Babel%20A%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus" Brl-Babel, U.  HYPERLINK "http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Baumann%20U%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus" Baumann, and N.C.  HYPERLINK "http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Collins%20NC%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus" Collins. 2009a. Structure-function analysis of the barley genome: the gene-rich region of chromosome 2HL.  HYPERLINK "javascript:AL_get(this,%20'jour',%20'Funct%20Integr%20Genomics.');" Funct. Integr. Genomics 9:67-79. Chen, A., J. Reinheimer, A. Brl-Babel.U. Baumann, M. Pallotta, G.B. Fincher, and N.C. Collins. 2009b. Genes and traits associated with chromosome 2H and 5H regions controlling sensitivity of reproductive tissues to frost in barley. Theor. Appl. Genet. 118:1465-1476. Cuesta-Marcos, A., E. Igartua, F.J. Ciudad, P. Codesal, J.R. Russell, J.L. Molina-Cano, M. Moralejo, P. Szcs , M. Pilar Gracia., J.M. Lasa and A.M. Casas. 2008. Heading date QTL in a spring winter barley cross evaluated in Mediterranean environment. Mol. Breed. 21:455-471. Gong, X., S. Westcott, C. Li, G. Yan, R. Lance, and D. Sun. 2009. Comparative analysis of genetic diversity between Qinghai-Tibetan wild and Chinese landrace barley. Genome 52:849-861. Guo, P., M. Baum, R.K. Varshney A. Graner, S. Grando, and S. Ceccarelli. 2008. QTLs for chlorophyll and chlorophyll fluorescence parameters in barley under post-flowering drought. Euphytica 163:203-214. Karsai, I., P. Szcs, B. Kszegi, P.M. Hayes, A. Casas, Z. Bed, and O. Veisz. 2008. Effects of photo and thermo cycles on flowering time in barley: a genetical phenomics approach. J. Exp. Bot. 59:2707-2715. Mittal, S., L.S. Dahleen, and D. Mornhinweg. 2008. Locations of quantitative trait loci conferring Russian wheat aphid resistance in barley germplasm STARS-9301B. Crop Sci. 48:1452-1458. Palmer, S.A. J.D. Moore, A.J. Clapham, P. Rose, and R.G. Allaby. 2009. Archaeogenetic evidence of ancient Nubian barley evolution from six to two-row indicates local adaptation. PLoS One 4(7): e6301. Roslinsky, V., P.E. Eckstein, B.G. Rossnagel, G.J. Scoles, V. Raboy. 2007. Molecular marker development and linkage analysis in three low phytic acid barley (Hordeum vulgare) mutant lines. Mol. Breed. 20:323-330. Stracke, S., G. Haseneyer, J.-B.Veyrieras, H.H. Geiger, S. Sascha Sauer, A. Graner, and H.-P. Piepho. 2009. Association mapping reveals gene action and interactions in the determination of flowering time in barley. Theor. Appl. Genet. 118: 259-273. Xue, D.-W. M.-C. Chen, M.-X. Zhou, S. Chen, Y. Mao, and G.-P. Zhang. 2008. QTL analysis of flag leaf in barley (Hordeum vulgare L.) for morphological traits and chlorophyll content. J. Zhejiang Univ. Sci. B. 9: 938-943. Coordinators Report: Barley Chromosome 3H (3) Luke Ramsay Genetics Programme Scottish Crop Research Institute Invergowrie, Dundee, DD2 5DA, Scotland, UK. e-mail: Luke.Ramsay@scri.ac.uk Over the last year there have been a number of publications reporting the mapping of genes and QTL on barley chromosome 3H. These included a number of publications that took advantage of available genomic resources to map at high density across the whole genome using the high throughput SNP genotyping. Close et al. (2009) summarised the development of SNP genotyping using the Illumina GoldenGate assay including a consensus map with 484 gene derived SNPs on 3H. The use of this genotyping platform also under-pinned the map with 123 genic SNPs on 3H presented by Sato and Takeda (2009) of a doubled haploid population derived from Haruna Nijo x H602 (H. v. ssp spontaneum). This population was also used by Sato et al. (2009) to map genes serially resulting in a genetic map with 444 ESTs mapped to 3H. The development of high density gene based maps has enabled detailed analysis of the co-linearity of chromosome 3H with the syntenic rice chromosome 1 (Thiel et al. 2009) and also underpins analysis of genetical genomics experiments (Druka et al. 2008). Other developments of relevance to mapping of chromosome 3H are the progress made in the development of a physical map of the barley genome (Schulte et al. 2009) and the integration of this with the genetic map (Close et al. 2009, Sakai et al. 2009). In comparison to genome wide studies, other reports have concentrated on the mapping of members of gene families of particular interest in barley. Thus Demetriou et al. (2009) report the mapping of HvHDAC2-2 (a member of the plant specific HD2 family of histone deacetylases) to the long arm of 3H (cosegregating with ABG004 in bin 13) and Kikuchi et al. 2009) mapping two members of the PEBP (phosphatidylethanolamine-binding protein) gene family, similar to FLOWERING LOCUS T (FT) in Arabidopsis, to 3H, HvMFT1 mapping distally in bin 1 and HvFt2 mapping to bin 6. In the analysis of the (1,3)-beta-D-glucan synthase gene family in barley by Schober et al. (2009) two genes HvGSL6 and HvGSL7 were mapped to bin 6 using the Clipper x Sahara population. Emebiri (2009) reported a QTL for beta-glucanase activity in bin 6 in a VB9524 x ND11231*12 population as well as a QTL for wort beta glucan content on the long arm of 3H. A QTL for friability was also found in the region of bins 6 and 7 by Laido et al. (2009) in the doubled haploid population Nure x Tremois. Other malting quality QTL were reported by Wei et al. (2009) with a QTL for Beta amylase activity in the central region and QTL for grain total protein and protein fraction content on the distal end of the long arm using a population derived from a cross between CM72 and Gairdner. The distal end of 3HL (Bins13-16) was also implicated as controlling Kolbach index (soluble/total protein) in an analysis of introgression lines derived from backcrosses of ISR 42-8 (H. v. ssp spontaneum) x Scarlett (Schmalenbach and Pillen 2009). In an approach integrating proteomic and genetic approaches, Finnie et al. (2009) mapped differences in seed protein profiles using a population derived from a Scarlett x Meltan cross. Two protein groups were mapped to 3H; one, D1, relating to a 17 kDa small heat shock protein mapped to the top of the short arm, whereas the other (J1, with unknown identity) mapped near HVM 27 in bin 6. During the last year QTL on 3H were also reported for resistance to pests and diseases. The major QTL on 3HL conferring Russian wheat aphid resistance previously found in a cross between the resistant STARS-9301B and Morex (Mittal et al. 2008) was also found in a cross between another resistance cultivar STARS-9577B and Morex (Mittal et al. 2009). Li et al. (2009) reported a major QTL for resistance to crown rot, caused by Fusarium spp., in a cross between the resistant landrace TX9425 and Franklin. This QTL, designated as Qcrs.cpi-3H, mapped slightly distal to Bmag0606 on 3HL and was coincident with one of two plant height QTL on 3HL in the same population though it is unclear whether which of these relates to the denso/sdw1 locus which is segregating in the population (Li et al. 2009). Jia et al. 2009 mapped a giberellic acid-20 oxidase to the long arm of 3H using a doubled haploid population derived from a Baudin x AC Metcalfe cross. Given its co-incidence with a QTL for plant height in the same cross and the genes homology to sd1 in rice the authors suggest that the gene is a good candidate for sdw1/denso. Other reports of genes on 3H included that of Dabbert et al. (2009) who mapped a low-tillering mutant; absent lower laterals (als) on the long arm of chromosome 3H in bin 11 using an F2 population derived form a cross between Bowman-als and Morex and that of Chen et al. (2009) who mapped a drought hyper sensitive cuticle mutant eibi1 to 3H bin 6 co-segregating with the EST AV918546 in two mapping populations. In addition several new reports of QTL on 3H for agronomic characters were published during this reporting period. Cuesta-Marcos et al. (2009) and Inostroza et al. (2009) both reported QTL for grain yield in the region of bins 13-14 although neither study used crosses in which the sdw/denso mutation was present (Beka x Mogador and Harrington x Caeserea 26-24 (H. v. ssp. spontaneum) respectively). The sdw/denso mutation was however postulated as a candidate gene for some of the QTL reported in studies using a BC2DH population (Bauer et al. 2009) or derived introgression lines (Schmalenbach and Pillen, 2009, Schmalenbach et al. 2009) derived from a cross between ISR 42-8 (H. v. ssp spontaneum) and Scarlett. These QTL included those for grain sieving fraction > 2.5mm (Schmalenbach and Pillen, 2009), plant height (Bauer et al. 2009, Schmalenbach et al. 2009), days to heading (Bauer et al. 2009, Schmalenbach et al. 2009) and grain yield (Bauer et al. 2009). These studies also included QTL on 3H unassociated with the sdw1 region including those for days to heading, plant height, grain yield, thousand grain weight and ears/m2 (Bauer et al. 2009) and grains per ear (Schmalenbach et al. 2009). In a study evaluating the phenotypic plasticity of grain yield and thousand kernel weight using data from multiple environments, Lacaze et al (2009) found QTL for the primary traits on 3H in both the Harrington x Morex and Steptoe x Morex populations and in the latter QTL for the plasticity trait around BCD828 in bin 6. References: Bauer, A.M., F. Hoti, M. von Korff, K. Pillen, J. Leon, and M.J. Sillanpaa, 2009. Advanced backcross-QTL analysis in spring barley (H. vulgare ssp spontaneum) comparing a REML versus a Bayesian model in multi-environmental field trials. Theoretical and Applied Genetics 119: 105-123. Chen, G.X., T. Komatsudu, M. Pourkheirandish, M. Sameri, K. Sato, T. Krugman, T. Fahima, A.B. Korol and E. Nevo, 2009. Mapping of the eibi1 gene responsible for the drought hypersensitive cuticle in wild barley (Hordeum spontaneum). Breeding Science 59: 21-26. Close, T.J., P.R. Bhat, S. Lonardi, Y. Wu, N. Rostoks, L. Ramsay, A. Druka, N. Stein, J.T. Svensson, S. Wanamaker, S. Bozdag, M.L. Roose, M.J. Moscou, S. Chao, R.K. Varshney, P. Szqcs, K. Sato, P.M. Hayes, D.E. Matthews, A. Kleinhofs, G.J. Muehlbauer, J. DeYoung, D.F. Marshall, K. Madishetty, R.D. Fenton, P. Condamine, A. Graner and R. Waugh, 2009. Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics 10: 582. Cuesta-Marcos, A., A.M. Casas, P.M. Hayes, M.P. Gracia, J.M. Lasa, F. Ciudad, P. Codesal, J.L. Molina-Cano and E. Igartua, 2009. Yield QTL affected by heading date in Mediterranean grown barley. Plant Breeding 128: 46-53. Dabbert, T., R.J. Okagaki, S. Cho, J. Boddu and G.J. Muehlbauer, 2009. The genetics of barley low-tillering mutants: absent lower laterals (als). Theoretical and Applied Genetics 118: 1351-1360. Demetriou, K., A. Kapazoglou, A. Tondelli, E. Francia, M.A. Stanca, K. Bladenopoulos and A.S Tsaftaris, 2009. Epigenetic chromatin modifiers in barley: I. Cloning, mapping and expression analysis of the plant specific HD2 family of histone deacetylases from barley, during seed development and after hormonal treatment. Physiologia Plantarum 136: 358-368. Druka, A., I. Druka, A.G. Centeno, H.Q. Li, Z.H. Sun, W.T.B. Thomas, N. Bonar, B, Steffenson, S.E. Ullrich, A. Kleinhofs, R.P. Wise, T.J. Close, E. Potokina, Z.W. Luo, C. Wagner, G.F. Schweizer, D.F. Marshall, M.J. Kearsey, R.W. Williams and R. Waugh, 2008. Towards systems genetic analyses in barley: Integration of phenotypic, expression and genotype data into GeneNetwork. BMC Genetics 9: 73. Emebiri, L.C., 2009. EST-SSR markers derived from an elite barley cultivar (Hordeum vulgare L. 'Morex'): polymorphism and genetic marker potential. Genome 52: 665-676. Finnie, C., M. Bagge, T. Steenholdt, O. Ostergaard, K. Bak-Jensen, G. Backes, A. Jensen, H. Giese, J. Larsen, P. Roepstorff and B. Svensson, 2009. Integration of the barley genetic and seed proteome maps for chromosome 1H, 2H, 3H, 5H and 7H. Functional & Integrative Genomics 9: 135-143. Inostroza, L., A. Pozo, I. Matus, D. Castillo, P. Hayes, S. Machado and A. Corey, 2009. Association mapping of plant height, yield, and yield stability in recombinant chromosome substitution lines (RCSLs) using Hordeum vulgare subsp spontaneum as a source of donor alleles in a Hordeum vulgare subsp vulgare background. Molecular Breeding 23: 365-376. Jia, Q.J., J.J. Zhang, S. Westcott, X.Q. Zhang, M. Bellgard, R. Lance and C.D. Li, 2009. GA-20 oxidase as a candidate for the semidwarf gene sdw1/denso in barley. Functional & Integrative Genomics 9: 255-262. Kikuchi, R., H. Kawahigashi, T. Ando, T. Tonooka and H. Handa, 2009. Molecular and functional characterization of PEBP genes in barley reveal the diversification of their roles in flowering. Plant Physiology 149: 1341-1353. Lacaze, X., P.M. Hayes and A. Korol, 2009. Genetics of phenotypic plasticity: QTL analysis in barley, Hordeum vulgare. Heredity 102: 163-173. Laido, G., D. Barabaschi, A. Tondelli, A. Gianinetti, A.M. Stanca, O.L.D. Nicosia, N. Di Fonzo, E. Francia and N. Pecchioni, 2009. QTL alleles from a winter feed type can improve malting quality in barley. Plant Breeding 128: 598-605. Li, H.B., M.X. Zhou and C.J. Liu, 2009. A major QTL conferring crown rot resistance in barley and its association with plant height. Theoretical and Applied Genetics 118: 903-910. Mittal, S., L.S. Dahleen, and D. Mornhinweg, 2008. Locations of quantitative trait loci conferring Russian wheat aphid resistance in barley germplasm STARS-9301B. Crop Science 48: 1452-1458. Mittal, S., L.S. Dahleen and D. Mornhinweg, 2009. Barley germplasm STARS-9577B lacks a Russian wheat aphid resistance allele at a Quantitative Trait Locus present in STARS-9301B. Crop Science 49: 1999-2004. Sakai, K, S. Nasuda, K. Sato and T.R. Endo, 2009. Dissection of barley chromosome 3H in common wheat and a comparison of 3H physical and genetic maps. Genes & Genetic Systems 84: 25-34. Sato, K., N. Nankaku and K. Takeda, 2009. A high-density transcript linkage map of barley derived from a single population. Heredity 103: 110-117. Sato, K. and K. Takeda, 2009. An application of high-throughput SNP genotyping for barley genome mapping and characterization of recombinant chromosome substitution lines. Theoretical and Applied Genetics 119: 613-619. Schmalenbach, I. and K. Pillen, 2009. Detection and verification of malting quality QTLs using wild barley introgression lines. Theoretical and Applied Genetics 118: 1411-1427. Schmalenbach, I., J. Leon and K. Pillen, 2009. Identification and verification of QTLs for agronomic traits using wild barley introgression lines. Theoretical and Applied Genetics 118: 483-497. Schober, M.S., R.A. Burton, N.J. Shirley, A.K. Jacobs and G.B. Fincher, 2009. Analysis of the (1,3)-beta-D-glucan synthase gene family of barley. Phytochemistry 70: 713-720. Schulte, D., T.J. Close, A. Graner, P. Langridge, T. Matsumoto, G. Muehlbauer, K. Sato, A.H. Schulman, R. Waugh, R.P. Wise and N. Stein, 2009. The International Barley Sequencing Consortium-at the threshold of efficient access to the barley genome. Plant Physiology 149: 142-147. Thiel, T., A. Graner, R. Waugh, I. Grosse, T.J. Close and N. Stein, 2009. Evidence and evolutionary analysis of ancient whole-genome duplication in barley predating the divergence from rice. BMC Evolutionary Biology 9: 209. Wei, K., D.W. Xue, Y.Z. Huang, X.L. Jin, F.B. Wu and G.P Zhang, 2009. Genetic mapping of quantitative trait loci associated with beta-amylase and limit dextrinase activities and beta-glucan and protein fraction contents in barley. Journal of Zhejiang University-Science B 10: 839-846. Coordinators Report: Chromosome 4H (4) Arnis Druka Genetics Programme Scottish Crop Research Institute Invergowrie, Dundee, DD2 5DA, Scotland, UK. e-mail:  HYPERLINK "mailto:Arnis.Druka@scri.sari.ac.uk" Arnis.Druka@scri.sari.ac.uk Several papers that mention genes and QTLs specifically on chromosome 4H have been published in 2008 - 2009. Schober et al., 2009 reports transcription patterns of members of the callose synthase gene family from barley (Hordeum vulgare). The fragments of six barley (1,3)-beta-d-glucan synthase-like (GSL) cDNAs were obtained by PCR amplification using primers designed to barley expressed sequence tag (EST) sequences. The HvGSL genes, designated HvGSL2 to HvGSL7, were mapped to individual loci that were distributed across the barley genome on chromosomes 3H, 4H, 6H and 7H. The HvGSL1 gene has been isolated and characterised previously. Transcript levels for all the genes were analysed by quantitative real-time PCR in a range of barley tissues and organs, at various developmental stages. High levels of transcript for many of the HvGSL genes were detected in endosperm during the early stages of grain development, when cellularisation of the endosperm was occurring and it is likely that many of the genes participate in this process. Transcripts of HvGSL1 and HvGSL5 mRNAs were significantly more abundant than other GSL mRNAs in the roots of young seedlings, while HvGSL7 mRNA was detected at relatively high levels along the length of two week old shoots. Comadran et al., 2009 reported population structure and genome-wide linkage disequilibrium (LD) analysis in 192 Hordeum vulgare accessions providing a comprehensive coverage of past and present barley breeding in the Mediterranean basin by using 50 nuclear microsatellite and 1,130 DArT(R) markers. Both clustering and principal coordinate analyses clearly sub-divided the sample into five distinct groups centred on key ancestors and regions of origin of the germplasm. For given genetic distances, large variation in LD values was observed, ranging from closely linked markers completely at equilibrium to marker pairs at 50 cM separation still showing significant LD. Mean LD values across the whole population sample decayed below r (2) of 0.15 after 3.2 cM. By assaying 1,130 genome-wide DArT((R)) markers it was demonstrated that, after accounting for population substructure, current genome coverage of 1 marker per 1.5 cM except for chromosome 4H with 1 marker per 3.62 cM is sufficient for whole genome association scans. It was also shown, that by identifying associations with powdery mildew that map in genomic regions known to have resistance loci, associations can be detected in strongly stratified samples provided population structure is effectively controlled in the analysis. Schmalenbach and Pillen 2009 reported a malting quality quantitative trait locus (QTL) study using a set of 39 wild barley introgression lines (hereafter abbreviated with S42ILs). Each S42IL harbors a single marker-defined chromosomal segment from the wild barley accession 'ISR 42-8' (Hordeum vulgare ssp. spontaneum) within the genetic background of the elite spring barley cultivar 'Scarlett' (Hordeum vulgare ssp. vulgare). The aim of the study was (1) to verify genetic effects previously identified in the advanced backcross population S42, (2) to detect new QTLs, and (3) to identify S42ILs exhibiting multiple QTL effects. For this, grain samples from field tests in three different environments were subjected to micro malting. Subsequently, a line x phenotype association study was performed with the S42ILs in order to localize putative QTL effects. A QTL was accepted if the trait value of a particular S42IL was significantly (P < 0.05) different from the recurrent parent as a control, either across all tested environments or in a particular environment. For eight malting quality traits, altogether 40 QTLs were localized, among which 35 QTLs (87.5%) were stable across all environments. Six QTLs (15.0%) revealed a trait improving wild barley effect. Out of 36 QTLs detected in a previous advanced backcross QTL study with the parent BC(2)DH population S42, 18 QTLs (50.0%) could be verified with the S42IL set. For the quality parameters alpha-amylase activity and Hartong 45 degrees C, all QTLs assessed in population S42 were verified by S42ILs. In addition, eight new QTL effects and 17 QTLs affecting two newly investigated traits were localized. Two QTL clusters harboring simultaneous effects on eight and six traits, respectively, were mapped to chromosomes 1H and 4H. In future, fine-mapping of these QTL regions will be conducted in order to shed further light on the genetic basis of the most interesting QTLs. Netsvetaev 2008 report mapping peroxidase activity. Identical specimens were separated by electrophoresis in two gels to detect and fix peroxidase isozymes. Both gels were stained by Coomassie brilliant blue for detecting proteins. One gel was previously incubated for detecting peroxidase activity. The differences in electrophoretic patterns between the gels indicate the zones of peroxidase activity. It has been shown that locus Prx 6H, controlling a low-mobility grain peroxidase (PRX 6H), is localized to barley chromosome 6. Two loci, Alb 4H and Alb 7H, controlling the biosyntheses of water-soluble proteins of barley endosperm, were localized to chromosomes 4 and 7. It has been demonstrated that barley culture is polymorphic at multiple molecular forms of peroxidase. References: Comadran. J, W.T.B. Thomas, F.A. van Eeuwijk, S. Ceccarelli, S. Grando, A.M. Stanca, N. Pecchioni, T. Akar, A. Al-Yassin, A. Benbelkacem, H. Ouabbou, J. Bort, I. Romagosa, C.A. Hackett, and J.R. Russell. 2009 Patterns of genetic diversity and linkage disequilibrium in a highly structured Hordeum vulgare association-mapping population for the Mediterranean basin. Theor Appl Genet. [Epub ahead of print]. Netsvetaev, VP. 2008. Specific aspects of detection of peroxidase isozymes and their genetic control in barley. Genetika. 44(9):1287-1289. Schmalenbach, I., and K. Pillen. 2009 Detection and verification of malting quality QTLs using wild barley introgression lines. Theor Appl Genet. [Epub ahead of print]. Schober, M.S., R.A. Burton, N.J. Shirley, A.K. Jacobs, and G.B. Fincher. 2009 Analysis of the (1,3)-beta-d-glucan synthase gene family of barley. Phytochemistry. [Epub ahead of print]. Coordinators report: Chromosome 5H (7). George Fedak Eastern Cereal and Oilseed Research Centre Agriculture and Agri-Food Canada, ECORC Ottawa, ON, Canada K1A OCA e-mail: George.Fedak@AGR.GC.CA For this coordinators report, the abstracts of the proceedings of the Plant and Animal Genome Conference for the years 2009 (volume XVII) and 2010 (volume XVIII) were screened. Cellulose synthase-like CslF genes have been implicated in the biosynthesis of (1,3:1,4) beta-D-glucans. Seven CslF genes have already been isolated from barley. Four of these genes have been mapped to a single locus on chromosome 2H in a region corresponding to a major QTL for grain glucan content. The other CslF genes map to chromosomes 1H, 5H, and 7H (Fincher et al., 2010). Flow cytometric chromosome sorting can be used to dissect the barley genome to chromosome 1H and the arms of chromosomes 2H to 7H. These aliquots can be used for sequencing and physical mapping. Of the 1536 genes examined using flow sorted material, 1329 were assigned to specific chromosome arms, confirming the chromosome/arm locations of these genes (Bhat, et al., 2009). Association mapping, using SNP markers, was used to identify barley lines with spot blotch resistance. A major gene was found on chromosome 7H. Markers were also associated with spot blotch resistance on chromosomes 2H, 3H and 5H (Zhou et al., 2009). FrH2 is one of two major QTLs, located on chromosome 5H, and affecting freezing tolerance and winter hardiness of barley. FR1 is hypothesized to be due to a pleiotropic effect of Vrn-1. FR2 spans a cluster of CBF genes; these loci are genetically and functionally linked. There are 14 genes encoding CBF (C repeat binding factors), that map coincidently with FrH2. It is not known if the FrH2 QTL is the result of a single CBF or a subset of these genes. In the first step of mapping FrH2, recombinants between 7 of the 14 CBF genes have been identified and showed that the cluster spans 81 cM. A BAC library is now being screened with 6CBF genes with the aim of constructing a single contig containing FrH2 (Francia et al., 2010). Stem rust race TTKS (Ug99) will also attack barley. This race is capable of attacking 70% of wheat and barley cultivars globally. To find resistance loci, an association mapping approach was used, on 761 breeding lines using 1927 SNP markers. Of the 761 lines tested, 19 were found to be resistant. Three markers were found to be significantly associated with resistance to TTKS. Two of the markers were located on the long arm of chromosome 5H and one on the short arm of 2H (Zhou et al., 2010). As part of the US National Barley Cap project, a subset of 96 advanced lines from the Virginia Tech. winter barley program were phenotyped for 11 agronomic traits and association mapping conducted with 2933 SNP markers. Significant SNPs were identified for many traits. Net blotch resistance was identified on chromosomes 2H, 3H and 5H with R2 values ranging from 6 to 8% (Liu et al., 2010). References: Bhat, P.R., J. Bartos, P. Suchanova, H. Simkova, J.T. Svensson, T.R. Endo, J. Dolezel and T.J.Close. 2009. Plant and Animal Genome XVII, Poster W O57. Fincher,G.B., R.A. Burton, A.J. Harvey, N.J. Shirley, S.A. Jobling and D.E.Mather,2010. Genetics of the cellulose synthase-like Hvcslf gene family in barley (Hordeum vulgare L.) and relationship with grain (1,3;1,4)-Beta-glucan content. Plant and Animal Genome XVIII, Poster P 332. Francia,E., M. Pasquariello, D. Barabaschi, A. Tondelli, D. Schulte, N. Stein, E.J. Stockinger, M.A. Stanca and N. Pechionni. 2010. Towards physical mapping and sequencing the Fr-H2 (frost resistance-H2) region of barley chromosome 5H. Plant and Animal Genome XVIII, Poster P 310. Liu, S., G.L. Berger, M.D. Hall, W.S. Brooks, S. Chao, C.A. Griffey, and G.J. Muelbauer. 2010. Identification of molecular markers for important traits in winter barley using association mapping. Plant and Animal Genome XVIII, Poster 167. Zhou, H., J.-L. Jannink, and B.J. Steffenson. 2009. Association mapping of adult plant spot blotch resistance in barley breeding germplasm from the USA. Plant and Animal Genome XVII, Poster P 263. Zhou, H., and B.J. Steffenson. 2010. Association mapping of stem rust race TTKS resistance in barley breeding germplasm from the USA. Plant and Animal Genome XVIII, Poster P 325. Coordinators Report: Chromosome 6H (6) Victoria Carollo Blake Montana State University Bozeman, MT 59717 USA e-mail: vblake@montana.edu Breeding efforts to improve barley for rainfed/dryland conditions have been a focus of several groups. Among those with results on 6H was a study by Inostroza, et al. who tested recombinant chromosome substitution lines in four locations in Chile and the US with varying water availability. Four regions on 6H were found to be significant for yield, two of which were significant at P<0.001. Another study to identify QTL associated to Mediterranean dryland conditions (Von Korff, et al.) revealed several loci on 6H in a RIL population derived from ER/Apm and Tadmor including days to maturity, grain yield, lodging and plant height. Agronomic performance was tested over four years in a rainfed environment in four locations in Syria and Lebanon. In pathology studies, Jafary et al. evaluated two mapping populations and the OWB population for resistance to four heterologous rust species. They found diverse genes conferring resistance and mapped six overlapping QTLs to 6H. Wagner et al. identified a minor QTL for Rhynchosporium secalis near the centromeric region of 6H. The authors reported that this region was relevant for a stress reaction but did not indicate the potential of candidate genes for R. secalis resistance. Malting quality studies identified six SNPs resulting in four haplotypes for the -amylase gene amy1 (Matthies, et al.). These SNPs were discovered in a collection of 117 European varieties, have varying degrees of influence on malting quality and have all been converted to high-throughput markers. New GrainGenes maps that included Chromosome 6H were included in the following Map_Data sets. 1) Barley, Abiotic QTL Consensus. These abiotic QTL, assembled as part of the plan to place all reported barley QTL into GrainGenes, were placed on the maps published as part of the Barley, Consensus 2005, SNP map set from Rostocks. et al. See Table 1 for a list of QTL placed on this map. 2) Barley, OWB, OPA2009. This map set adds OPA and DArT markers to the Oregon Wolfe Barley maps with previously described malt-quality QTL aligned (Szucs et al., 2009). See Table 1 for a list of QTL placed on this map. 3) Barley, Agronomic QTL Consensus. Agronomic QTL, placed on the maps published as part of the Barley, Consensus 2005, SNP map set from Rostocks. et al. See Table 1 for a list of QTL placed on this map. 4) Barley OPA123, Consensus. This map set contains 1943 OPA SNP markers, hundreds of which are on 6H. This map was provided as a personal communication from Tim Close and will be updated in 2009. Table 1. 6H QTL placed onto curated consensus maps on GrainGenesQTLTraitGrainGenes Map DataOriginal ReferenceQAa.ChHa-6Halpha-Amylase activityBarley, OWB, OPA2008Coventry SJ et al., 2003QAa.StMo-6Halpha-Amylase activityBarley, OWB, OPA2008Hayes P et al., 1993QAa.HaTR-6Halpha-Amylase activityBarley, OWB, OPA2008Mather DE et al., 1997QBoss.ClSa-6HBoron sensitivity (whole shoot)Barley, Abiotic QTL ConsensusJefferies SP et al., 1999QHd.BlKy-6HDays to headingBarley, Agronomic QTL ConsensusBezant J et al., 1996QHd.StMo-6HDays to headingBarley, Agronomic QTL ConsensusHayes P et al., 1993QHd.IgTr-6H.1Days to headingBarley, Agronomic QTL ConsensusLaurie DA et al., 1995QHd.IgTr-6H.2Days to headingBarley, Agronomic QTL ConsensusLaurie DA et al., 1995QDp.StMo-6HDiastatic PowerBarley, OWB, OPA2008Hayes P et al., 1993QDp.HaTR-6HDiastatic PowerBarley, OWB, OPA2008Mather DE et al., 1997QSpsm.TyVo-6HSpikes per areaBarley, Agronomic QTL ConsensusKjaer B et al., 1996QEv.HaTR-6HExtract viscosityBarley, OWB, OPA2008Mather DE et al., 1997QFcd.HaTR-6HFine coarse differenceBarley, OWB, OPA2008Mather DE et al., 1997QGms.HaTR-6HGermination speedBarley, Agronomic QTL ConsensusMano Y et al., 1997QHsh.IgDa-6HHead shatteringBarley, Agronomic QTL ConsensusBackes G et al., 1995QHt.IgDa-6HHeightBarley, Agronomic QTL ConsensusBackes G et al., 1995QHt.StMo-6HHeightBarley, Agronomic QTL ConsensusHayes P et al., 1993QKps.BlKy-6HKernels per spikeBarley, Agronomic QTL ConsensusBezant J et al., 1997QLg.IgDa-6HLodgingBarley, Agronomic QTL ConsensusBackes G et al., 1995QLg.StMo-6HLodgingBarley, Agronomic QTL ConsensusHayes P et al., 1993QMe.StMo-6HMalt extractBarley, OWB, OPA2008Hayes P et al., 1993QPgw.BlKy-6HPlant grain weightBarley, Agronomic QTL ConsensusBezant J et al., 1997QLr.HaTR-6HReaction to leaf rustBarley, Pathology QTL, Consensus* Spaner D et al. 1998QNb.HaTR-6HReaction to net blotchBarley, Pathology QTL, Consensus Spaner D et al. 1998QNb.StMo-6H.1Reaction to net blotchBarley, Pathology QTL, Consensus Steffenson B et al., 1996QNb.StMo-6H.2Reaction to net blotchBarley, Pathology QTL, Consensus Steffenson B et al., 1996QPm.IgDa-6HReaction to Powdery mildewBarley, Pathology QTL, Consensus Backes G et al. 1996QScd.IgDa-6H.1Reaction to scaldBarley, Pathology QTL, Consensus Backes G et al., 1995QScd.IgDa-6H.2Reaction to scaldBarley, Pathology QTL, Consensus Backes G et al., 1995QScd.HaTR-6HReaction to scaldBarley, Pathology QTL, Consensus Spaner D et al. 1998QSsg.StMo-6HSalt sensitivity at germinationBarley, Abiotic QTL ConsensusMano Y et al., 1997QSss.StMo-6HSalt sensitivity in seedlingsBarley, Abiotic QTL ConsensusMano Y et al., 1997QSgw.BlKy-6H.1Spike grain weightBarley, Agronomic QTL ConsensusBezant J et al., 1997QSgw.BlKy-6H.2Spike grain weightBarley, Agronomic QTL ConsensusBezant J et al., 1997QStb.IgDa-6HStem breakingBarley, Agronomic QTL ConsensusBackes G et al., 1995QTw.BlKy-6HTest weightBarley, OWB, OPA2008Bezant J et al., 1997QTw.HaMo-6H.1Test weightBarley, OWB, OPA2008Marquez-Cedillo LA et al. 2000QTw.BlE2-6H.2Test weightBarley, OWB, OPA2008Thomas W et al. 1995QTw.HaTR-6HTest weightBarley, OWB, OPA2008Tinker NA et al. 1995QTil.TyVo-6HTop internode lengthBarley, Agronomic QTL ConsensusKjaer B et al. 1995QYld.IgDa-6HYieldBarley, Agronomic QTL ConsensusBackes G et al., 1995QYld.BlKy-6HYieldBarley, Agronomic QTL ConsensusBezant J et al., 1997QYld.StMo-6HYieldBarley, Agronomic QTL ConsensusHayes P et al., 1993QTL not placed on Consensus mapsQTLTraitOriginal ReferenceQC13.LiHS-6H.1C13 contentEllis RP et al. 1997QC13.LiHS-6H.2C13 contentEllis RP et al. 1997QN15c.LiHS-6HNitrogen 15 contentEllis RP et al. 1997QTw.BlE2-6H.1Test weightThomas W et al. 1995QTw.HaMo-6H.2Test weightMarquez-Cedillo LA et al. 2000*Map on GrainGenes pending References: Backes, G., A. Graner, B. Foroughi-Wehr, G. Fischbeck, G. Wenzel and A. Jahoor. 1995. Localization of quantitative trait loci (QTL) for agronomic important characters by the use of a RFLP map in barley (Hordeum vulgare L.). Theor. Appl. Genet. 90:294-302. Backes, G., G. Schwarz, G. Wenzel and A. Jahoor. 1996. Comparison between QTL analysis of powdery mildew resistance in barley based on detached primary leaves and on field data. Plant Breed. 115:419-421. Bezant, J., D. Laurie, N. Pratchett, J. Chojecki and M. Kearsey. 1996. Marker regression mapping of QTL controlling flowering time and plant height in a spring barley (Hordeum vulgare L.) cross. Heredity 77:64-73. Bezant, J., D. Laurie, N. Pratchett, J. Chojecki and M. Kearsey. 1997. Mapping QTL controlling yield and yield components in a spring barley (Hordeum vulgare L.) cross using marker regression. Mol. Breed. 3:29-3. Coventry, S.J., H.M. Collins, A.R. Barr, S.P. Jefferies, K.J. Chalmers, S.J. Logue and P. Langridge. 2003. Use of putative QTLs and structural genes in marker assisted selection for diastatic power in malting barley (Hordeum vulgare L.) Aust. J. Ag. Res. 54:1241-1250. Ellis, R.P., B.P. Forster, R. Waugh, N. Bonar, L.L. Handley, D. Robinson, D.C. Gordon and W. Powell. 1997. Mapping physiological traits in barley. New Phytol. 137:149-157. Hayes, P., B. Liu, S. Knapp, F. Chen, B. Jones, T. Blake, J. Franckowiak, D. Rasmusson, M. Sorrells and S. Ullrich. 1993. Quantitative trait locus effects and environmental interaction in a sample of North American barley germplasm. Theor. Appl. Gen. 87:392-401. HYPERLINK "http://www.springerlink.com.proxybz.lib.montana.edu/content/?Author=Luis+Inostroza"Inostroza, L., HYPERLINK "http://www.springerlink.com.proxybz.lib.montana.edu/content/?Author=Alejandro+del+Pozo"A. del Pozo, HYPERLINK "http://www.springerlink.com.proxybz.lib.montana.edu/content/?Author=Ivan+Matus"I. Matus, HYPERLINK "http://www.springerlink.com.proxybz.lib.montana.edu/content/?Author=Dalma+Castillo"D. Castillo, HYPERLINK "http://www.springerlink.com.proxybz.lib.montana.edu/content/?Author=Patrick+Hayes"P. Hayes, HYPERLINK "http://www.springerlink.com.proxybz.lib.montana.edu/content/?Author=Stephen+Machado"S. Machado and HYPERLINK "http://www.springerlink.com.proxybz.lib.montana.edu/content/?Author=Ann+Corey"A. Corey. 2009. Association mapping of plant height, yield, and yield stability in recombinant chromosome substitution lines (RCSLs) using Hordeum vulgare subsp. spontaneum as a source of donor alleles in a Hordeum vulgare subsp. vulgare background. Mol. Breed. 23:357-538. Jafary, H., G. Albertazzi, T.C. Marcel and R.E. Niks. 2008. High Diversity of Genes for Nonhost Resistance of Barley to Heterologous Rust Fungi. Genetics. 178:2327-2339. Jefferies, S.P., A.R. Barr, A. Karakousis, J.M. Kretschmer, S. Manning, K.J. Chalmers, J.C. Nelson, A.K.M.R. Islam and P. Langridge. 1999. Mapping of chromosome regions conferring boron toxicity tolerance in barley (Hordeum vulgare L.). Theor. Appl. Genet. 98:1293-1303. Kjaer, B., J. Jensen and H. Giese. 1995. Quantitative trait loci for heading date and straw characters in barley. Genome 38:1098-1104. Kjaer, B., and J. Jensen. 1996. Quantitative trait loci for grain yield and yield components in a cross between a six-rowed and a two-rowed barley. Euphytica 90:39-48. Laurie, D.A., N. Pratchett, J.H. Bezant and J.W. Snape. 1995. RFLP mapping of five major genes and eight quantitative trait loci controlling flowering time in a winter x spring barley (Hordeum vulgare L.) cross. Genome 38:575-585. Mano, Y. and K. Takeda. 1997. Mapping quantitative trait loci for salt tolerance at germination and the seedling stage in barley (Hordeum vulgare L.). Euphytica 94:263-272. Marquez-Cedillo, L.A., P.M. Hayes, B.L. Jones, A. Kleinhofs, W.G. Legge, B.G. Rossnagel, K. Sato, E. Ullrich, D.M. Wesenberg, S.E. Ullrich and NABGMP. 2000. QTL analysis of malting quality on barley based on the doubled-haploid progeny of two elite North American varieties representing different germplasm groups. Theor. Appl. Genet. 101:173-184. Mather, D.E., N.A. Tinker, D.E. LaBerge, M. Edney, B.L. Jones, B.G. Rossnagel, W. Legge, K.G. Griggs, R.B. Irvine, D.E. Falk and K.J. Kasha. 1997. Regions of the genome that affect grain and malt quality in a North American two-row barley cross. Crop Sci. 37:544-554. Matthies, I.E., S. Weise and M.S. Rder. 2009. Association of haplotype diversity in the -amylase gene amy1 with malting quality parameters in barley. Mol. Breed. 23:139-152. Rostoks, N., S. Mudie, L. Cardle, J. Russell, L. Ramsay, A. Booth, J.T. Svensson, S.I. Wanamaker, H. Walia, E.M. Rodriguez, P.E. Hedley, H. Liu, J. Morris, T.J. Close, D.F. Marshall, R. Waugh. 2005. Genome-wide SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress. Mol. Genet. Gen. 274:515-527. Spaner, D., L.P. Shugar, T.M. Choo, I. Falak, K.G. Briggs, W. Legge, D.E. Falk, S.E. Ullrich, N.A. Tinker, B. Steffenson and D.E. Mather. 1998. Mapping of disease resistance loci in barley on the basis of visual assessment of naturally occurring symptoms. Crop Sci. 38:843-850. Steffenson, B., P. Hayes and A. Kleinhofs. 1996. Genetics of seedling and adult plant resistance to net blotch (Pyrenophora teres f teres) and spot blotch (Cochliobolus sativus) in barley. Theor. Appl. Gen. 92:552-558. Szcs, P., V.C. Blake, P.R. Bhat, S. Chao, T.J. Close, A. Cuesta-Marcos, G.J. Muehlbauer, L. Ramsay, R. Waugh, and P.M. Hayes. 2009. An integrated resource for barley linkage map and malting quality QTL alignment. Plant Genome 2:134-140. Thomas, W., W. Powell, R. Waugh, K. Chalmers, U. Barua, P. Jack, V. Lea, B.P. Forster, J. Swanston and R. Ellis. 1995. Detection of quantitative trait loci for agronomic, yield, grain and disease characters in spring barley (Hordeum vulgare L.). Theor. Appl. Genet. 91:1037-1047. Tinker, N.A., D.E. Mather, T.K. Blake, K.G. Briggs, T.M. Choo, L. Dahleen, S.M. Dofing, D.E. Falk, T. Ferguson, J.D. Franckowiak, R. Graf, P.M. Hayes, D. Hoffman, R.B. Irvine, A. Kleinhofs, W. Legge, B.G. Rossnagel, M.A. Saghai Maroof, G.J. Scoles, L.P. Sugar, B. Steffenson, S. Ullrich and Kasha. 1995. Regions of the Genome that Affect Agronomic Performance in Two-Row Barley. Crop Sci. 36:1053-1062. Von Korff, M., S. Grando, A. Del Greco, D. This , M. Baumand S. Ceccarelli. 2008. Quantitative trait loci associated with adaptation to Mediterranean dryland conditions in barley. Theor. Appl. Gen. 117:653-669. Wagner, C., G. Schweizer, M. Krmer, A.G. Dehmer-Badani, F. Ordon and W. Friedt. 2008. The complex quantitative barley Rhynchosporium secalis interaction: newly identified QTL may represent already known resistance genes. Theor. Appl. Gen. 118:113-122. Coordinators Report: Chromosome 7H (1) Lynn S. Dahleen USDA-Agricultural Research Service Fargo, ND 58105, USA e-mail: Lynn.dahleen@ars.usda.gov Mapping research continued to provide additional markers, QTL and gene locations in 2008. Potokina et al. (2008) used the Barley GeneChip to map transcript derived markers (TDMs) and expression QTL for 16,000 barley genes in embryo-derived tissue from germinating seed of the Steptoe x Morex mapping population. They added 243 TDMs and 3673 expression QTL to the chromosome 7H map. These gene-specific markers should be useful to define the genetic control behind traits of interest. Kota et al. (2008) sequenced 437 expressed sequence tag (EST)-derived gene fragments in seven cultivars, including the parents of three mapping populations. Single nucleotide polymorphisms (SNPs) and insertion/deletion (InDel) polymorphisms were mapped, including 35 markers on chromosome 7H, and the SNP markers were converted to cleaved amplified polymorphism (CAP) assays. These markers showed 2 to 6 haplotypes and 1 to 28 SNPs from the 35 sequences. Varshney et al. (2008) screened 50 simple sequence repeat (SSR) and 50 SNP markers on six diverse barley genotypes from ICARDA and six parents from mapping populations to identify a core set of highly polymorphic markers. Four SSR and four SNP markers were selected for chromosome 7H. Two of the SNPs could be identified by CAP assays, one by InDel and the final one by pyrosequencing. Each marker identifies a single locus, gives high quality amplification, and was highly polymorphic among the diverse genotypes tested. Disease resistance QTL were evaluated in a variety of populations. Sato et al. (2008) mapped QTL for FHB resistance in five two-rowed populations derived from crosses with Harbin 2-row as one of the parents. One locus on chromosome 7H was identified in three of the populations, with the Harbin 2-row allele contributing to susceptibility. Wagner et al. (2008) examined scald resistance in two populations, Igri (rrs1) x Triton (Rrs1) and Post x Vixen (both rrs1). Three QTL were present in the first population, including Rrs1 on chromosome 2H and a minor QTL from Triton on the long arm of chromosome 7H that explained about 20% of the variation for scald reaction. This is probably Rrs2. A minor QTL from Vixen was located on the short arm of chromosome 7H that explained about 10% of the variation. Both of these loci are in regions where multiple resistance genes have been located. Grewal et al. (2008a and b) examined markers for both the net and spot forms of net blotch. QTL analysis of a cross between CDC Dolly (susceptible) and TR251 (resistant) located several loci, including one on chromosome 7H that provided resistance to both forms. They also tested markers linked to net blotch resistance in Australian germplasm for their utility in Canadian breeding materials. QTL analysis of a Chebec x Harrington population located a major QTL for seedling resistance on chromosome 7H, in the same position as Rpt4. This QTL is not of much use in Canadian germplasm because it is not effective against the common spot form of net blotch prevalent in Canada. Lehmensiek et al. (2008) added a covered smut resistance gene, Ruh.7H, to the Alexis x Sloop linkage map, linked to the RFLP marker ABG704. They identified an EST-based codominant PCR marker between Ruh.7H and ABG704. They then used high resolution melting (HRM) procedures to locate two additional SNP markers to the telomere of chromosome 7HS. The HRM technique allowed mapping of single base changes without sequencing. Schmalenbach et al. (2008) developed a set of 59 introgression lines in Scarlett, each containing a chromosomal segment of Hordeum vulgare ssp. spontaneum accession ISR42-8. They tested the lines for reaction to powdery mildew and leaf rust. A powdery mildew resistance QTL was located on chromosome 7H in three potentially overlapping introgression lines. A QTL for leaf rust resistance was located in one of the introgression lines. Both QTL were previously identified in the BC2DH population used to derive the introgression lines (von Korff et al. 2008b). Mirlohi et al. (2008) examined allelic variability of the Rpg1 stem rust resistance locus in eight Swiss landraces and eight wild barley accessions compared to the Morex allele to investigate diversity and possible origins of the gene. Only one Swiss landrace contained an intact and functional Rpg1. The other lines had a GTT InDel, evidence of unequal recombination, or lacked all or part of the locus which resulted in susceptibility to stem rust. No other functioning alleles were found at the locus. Jafari et al. (2008) mapped genes for non-host resistance to four leaf rust pathogens that infect wall barley, meadow barley, wheat grass or wheat, in a cross between SusPtrit x Cebada Capa and the Oregon Wolfe barley DH population. These were compared to locations of non-host resistance genes identified in SusPtrit x Vada. Chromosome 7H contained QTL for immunity to Puccinia triticina, P. hordei-murini, and P. persistens, from both Vada and SusPtrit. The locations often corresponded to map positions of defense gene homolog-based markers. Positional cloning was used by Taketa et al. (2008) to identify the gene responsible for hull adherence at the nud locus. Markers that cosegregated or were closely linked to nud were used to identify overlapping BAC clones containing the locus. Nud was identified as an ethylene response factor family transcription factor that controls lipid biosynthesis and thus hull adherence. Lines without hull adherence (nud) had a 17 kb deletion in the transcription factor and lack a lipid layer between the hull and developing caryopsis. Evidence from their study indicates a single mutation deleting Nud was selected and spread across the world to domesticate barley. Jestin et al. (2008) identified QTL for aleurone thickness and cell layer number from a cross between Erhard Frederichen (3-4 cell layers) and Criolla Negra (2 cell layers). One of the three QTL located near the center of chromosome 7H explained 12-15% of the variation in cell layer number and thickness. As the aleurone is rich in minerals and vitamins, a thicker aleurone may provide improved nutrition for barley consumers. Burton et al. (2008) located seven members of the cellulose synthase-like (CslF) genes which are involved in -glucan biosynthesis in barley. One of these genes, HvCslF6, was located on chromosome 7H, near locations where QTL for grain -glucan have been found. HvCslF6 mRNA was more abundant than transcripts of the other CslF genes in barley in most tissues examined, but especially in the developing barley coleoptile and endosperm. Several studies examined traits that affect quality. QTL for preharvest sprouting were located on most chromosomes by Ullrich et al. (2008). One of these was on chromosome 7H, between the Brz and Amy2 loci. This QTL influenced preharvest sprouting and germination percent in both the greenhouse and field. Von Korff et al. (2008a) located QTL for malting quality from H. vulgare ssp. spontaneum advanced backcrosses. On chromosome 7H, they found one QTL for fine-grind malt extract, three for friability and one for Hartong 45C. Only one of the favorable alleles on chromosome 7H came from the wild parent. QTL involved in -glucan levels were examined by Li et al. (2008) in a cross between CDC Bold and TR251. A major QTL near the centromere of chromosome 7H was detected in all three years of the study, which explained up to 39% of the variation for -glucan. Another chromosome 7H QTL was detected on the long arm in one year which explained 12.7% of the variation. Both low -glucan alleles came from CDC Bold. Three studies verified QTL in locations previously reported for heading and anthesis dates on chromosome 7H (Cuesta-Marcos et al. 2008a and b; Castro et al. 2008). Most of these QTL had minor effects, except for one major QTL located by Cuesta-Marcos et al. (2008a) which explained up to 14% of the variation in heading date. With drought conditions becoming more prevalent in many barley growing areas, several studies mapped QTL associated with adaption to dry conditions. Takahashi et al. (2008) located QTL for elongation of the coleoptile and first internode of deep-seeded barley. A major QTL was found for first internode elongation on chromosome 7H. Four QTL with small effects were also located on chromosome 7H, two for coleoptile elongation and two for first internode elongation. Von Korff et al. (2008c) examined QTL associated with dryland adaptation in a cross between Tadmor and ER/Apm. A main effect QTL for grain yield was located on the end of the long arm of chromosome 7H. They also found three QTL x environment interactions on chromosome 7H, two for grain yield and one for heading date. A set of 192 genotypes were grown in wet and dry environments in seven countries for two years in a study by Comadran et al. (2008). They identified a large number of marker-grain yield associations, including nine potential QTL on chromosome 7H. These three studies provide linkages for marker-assisted selection and a start at identifying candidate genes to define pathways involved in drought tolerance. Two studies examined marker allele changes in breeding programs over time. Condon et al. (2008) tested regional ancestors, parental lines and cultivar candidates from the University of Minnesota breeding program with 71 markers, 12 of which were on chromosome 7H. In most cases, allele number decreased over time, especially around Rpg1, a spot blotch locus from NDB112 and the major malt quality QTL on the short arm of 7H. Three of the chromosome 7H loci were fixed in the cultivar candidate group from 1988-1998. Pswarayi et al. (2008) examined allele frequencies at marker loci linked to QTL in 188 landraces and old and modern cultivars mostly from the Mediterranean area. Three of the chromosome 7H markers were associated with yield QTL. For each of these loci, alleles associated with higher yield were present at a higher frequency in modern cultivars than in the landraces. Both of these studies emphasize the concerns about reduced genetic variability in modern cultivars and the need to examine older germplasm for traits that can improve adaptation. References: Burton, R.A., S.A. Jobling, A.J. Harvey, N.J. Shirley, D.E. Mather, A. Bacic, and G.B. Fincher. 2008. The genetics and transcriptional profiles of the cellulose synthase-like HvCs1F gene family in barley. Plant Physiol 146:1821-1833. Castro, A.J., P. Hayes, L. Viega, and I. Vales. 2008. Transgressive segregation for phonological traits in barley explained by two major QTL alleles with additivity. Plant Breeding 127:561-568. Comadran, J., J.R. Russell, F.A. van Eeuwijk, S. Ceccerelli, S. Grando, M. Baum, A.M. Stanca, N. Pecchioni, A.M. Mastrangelo, T. Akar, A. Al.-Yassin, A. Benbelkacem, W. Choumane, H. Ouabbou, R. Dahan, J. Bort, J.-L. Araus, A. Pswarayi, I. Romagosa, C.A. Hackett, and W.T.B. Thomas. 2008. Mapping adaptation of barley to droughted environments. Euphytica 161:35-45. Condon, F., C. Gustus, D.C. Rasmusson, and K.P. Smith. 2008. Effect of advanced cycle breeding on genetic diversity in barley breeding germplasm. Crop Sci 48:1027-1036. Cuesta-Marcos, A., E. Igartua, F.J. Ciudad, P. Codesal, J.R. Russell, J.L. Molina-Cano, M. Moralejo, P. Szucs, M.P. Gracia, J.M. Lasa, and A.M. Casas. 2008a. Heading date QTL in spring x winter barley cross evaluated in Mediterranean environments. Mol Breeding 21:455-471. Cuesta-Marcos, A., A.M. Casas, S. Yahiaoui, M.P. Gracia, J.M. Lasa, and E. Igartua. 2008b. Joint analysis for heading date QTL in small interconnected barley populations. Mol Breeding 21:383-399. Grewal, T.S., B.G. Rossnagel, and G.J. Scoles. 2008a. The utility of molecular markers for barley net blotch resistance across geographic regions. Crop Sci 48:2321-2333. Grewal, T.S., B.G. Rossnagel, C.J. Pozniak, and G.J. Scoles. 2008b. Mapping quantitative trait loci associated with barley net blotch resistance. Theor Appl Genet 116:529-539. Jafari, H., G. Albertazzi, T.C. Marcel, and R.E. Niks. 2008. High diversity of genes for nonhost resistance of barley to heterologous rust fungi. Genetics 178:2327-2339. Jestin, L., C. Ravel, S. Auroy, B. Laubin, M.-R. Perratant, C. Pont, and G. Charmet. 2008. Inheritance of the number and thickness of cell layers in barley aleurone tissue (Hordeum vulgare L.): an approach using F2-F3 progeny. Theor Appl Genet 116:991-1002. Kota, R., R.K. Varshney, M. Prasad, H. Zhang, N. Stein, and A. Graner. 2008. EST-derived single nucleotide polymorphism markers for assembling genetic and physical maps of the barley genome. Funct Integr Genomics 8:223-133. Lehmensiek, A, M.W. Sutherland, and R.B. McNamara. 2008. The use of high resolution melting (HRM) to map single nucleotide polymorphism markers linked to a covered smut resistance gene in barley. Theor Appl Genet 117:721-728. Li, J., M. Baga, B.G. Rossnagel, W.G. Legge, and R.N. Chibbar. 2008. Identification of quantitative trait loci for -glucan concentration in barley grain. J Cereal Sci 48:647-655. Mirlohi, A., R. Brueggeman, T. Drader, J. Nirmala, B.J. Steffenson, and A. Kleinhofs. 2008. Allele sequencing of the barley stem rust resistance gene Rpg1 identifies regions relevant to disease resistance. Phytopathol 98:910-918. Potokina, E., A. Druka, Z. Luo, R. Wise, R. Waugh, and M. Kearsey. 2008. Gene expression quantitative trait locus analysis of 16000 barley genes reveals a complex pattern of genome-wide transcriptional regulation. Plant J 53:90-101. Pswarayi, A.. F.A. van Eeuwijk, S. Ceccarelli, S. Grando, J. Comadran, J.R. Russell, N. Pecchioni, A. Tondelli, T. Akar, A. Al-Yassin, A. Benbelkacem, H. Ouabbou, W.T.B. Thomas, and I, Romagosa. 2008. Changes in allele frequencies in landraces, old and modern barley cultivars of marker loci close to QTL for grain yield under high and low input conditions. Euphytica 163:435-447. Sato, K., K. Hori, and K. Takeda. 2008. Detection of Fusarium head blight resistance QTLs using five populations of top-cross progeny derived from two-row x two-row crosses in barley. Mol Breeding 22:517-526. Schmalenbach, I., N. Korber, K. Pillen. 2008. Selecting a set of wild barley introgression lines and verification of QTL effects for resistance to powdery mildew and leaf rust. Theor Appl Genet 117:1093-1106. Takahashi, H., M. Noda, K. Sakurai, A. Watanabe, H. Akagi, K. Sato, and K. Takeda. 2008. QTLs in barley controlling seedling elongation of deep-sown seeds. Euphytica 164:761-768. Taketa, S., S. Amano, Y. Tsujino, T. Sato, D. Saisho, K. Kakeda, M. Nomura, T. Suzuki, T. Matsumoto, K. Sato, H. Kanamori, S. Kawasaki, and K. Takeda. 2008. Barley grain with adhering hulls is controlled by and ERF family transcription factor gene regulating a lipid biosynthesis pathway. Proc Natl Acad Sci USA 105:4062-4067. Ullrich, S.E., J.A. Clancy, I.E. del Blanco, H. Lee, V.A. Jitkov, F. Han, A. Kleinhofs, and K. Matsui. 2008. Genetic analysis of preharvest sprouting in a six-row barley cross. Mol Breeding 21:249-259. Varshney, R.K., T. Theil, T. Sretenovik-Rajicic, M. Baum, J.. Valkoun, P. Guo, S. Grando, S. Ceccarelli, and A. Graner. 2008. Identification and validation of a core set of informative genic SSR and SNP markers for assaying functional diversity in barley. Mol Breeding 22:1-13. von Korff, M., H. Wang, J. Leon, and K. Pillen. 2008a. AB-QTL analysis in spring barley: III. Identification of exotic alleles for the improvement of malting quality in spring barley (H. vulgare ssp. spontaneum). Mol Breeding 21:81-93. von Korff, M., H. Wang, J. Leon, and K. Pillen. 2008b. AB-QTL analysis in spring barley. I. detection of resistance genes against powdery mildew, leaf rust and scald introgressed from wild barley. Theor Appl Genet 111:583-590. von Korff, M., S. Grando, A. Del Greco, D. This, M. Baum, and S. Ceccarelli. 2008c. Quantitative trait loci associated with adaptation to Mediterranean dryland conditions in barley. Theor Appl Genet 117:653-669. Wagner, C., G. Schweizer, M. Kramer, A.G. Dehmer-Badani, F. Ordon, and W. Friedt. 2008. The complex quantitative barley-Rhynchosporium secalis interaction: newly identified QTL may represent already known resistance genes. Theor Appl Genet 118:113-122. Integration of molecular and morphological marker maps No report received Barley Genetic Stock Center No report received Trisomic and aneuploid stocks No report received Coordinators report: Translocations and balanced tertiary trisomics Andreas Houben Leibniz Institute of Plant Genetics and Crop Plant Research DE-06466 Gatersleben, Germany email: houben@ipk-gatersleben.de Dimitrova and colleagues (Sofia, Bulgaria) studied the ribosomal RNA gene expression in barley lines with modulated activity of nucleolus organizers (NORs) caused by three different types of chromosomal rearrangements. The lack of the whole rRNA gene cluster residing in chromosome 6H of the homozygous deletion line T-35 led to a compensatory effect in the expression of the single NOR remained on chromosome 511, resulting in increased rRNA transcription. The enhanced rRNA gene transcription in this line was accompanied by an increased rate of transcript elongation. The repositioning by translocation of NOR of chromosome 5H to the long non-satellite arm of chromosome 6H did not cause any alterations in the "run-on" transcription, as indicated by the activity of RNA polymerase 1, and in the susceptibility of rDNA chromatin to DNase I digestion, thus suggesting that the chromosome reconstruction did not affect the number of active rRNA genes involved in transcription. No alterations were also observed in segment tetraploid D-2946, which contained a duplication of medial region of satellite arm of chromosome 6H (Dimitrova et al., 2008). There were no requests for samples of balanced tertiary trisomics stock collection. The collection is being maintained in cold storage. To the best knowledge of the coordinator, there are no new publications dealing with balanced tertiary trisomics in barley. Limited seed samples are available any time, and requests can be made to the coordinator. References: Dimitrova, A.D., E.D. Ananiev, L.M. Stoilov, and K.I. Gecheff. 2008. Ribosomal RNA Gene Expression in Reconstructed Barley Karyotypes. Cr Acad Bulg Sci 61, 1159-1168. Coordinators report: Autotetraploids Wolfgang Friedt, Institute of Crop Science and Plant Breeding I. Justus-Liebig-University, Heinrich-Buff-Ring 26-32 DE-35392 Giessen, Germany e-mail:  HYPERLINK mailto:wolfgang.friedt@agrar.uni-giessen.de wolfgang.friedt@agrar.uni-giessen.de Fax: +49(0)641-9937429 The collection of barley autotetraploids (exclusively spring types) described in former issues of BGN is maintained at the Giessen Field Experiment Station of our institute. The set of stocks, i.e. autotetraploids (4n) and corresponding diploid (2n) progenitors (if available) have last been grown in the field for seed multiplication in summer 2000. Limited seed samples of the stocks are available for distribution. Coordinators report: The Genetic Male Sterile Barley Collection M.C. Therrien Agriculture and Agri-Food Canada Brandon Research Centre Box 1000A, RR#3, Brandon, MB Canada R7A 5Y3 E-mail: MTherrien@agr.gc.ca The Genetic Male Sterile Barley Collection has been at Brandon since 1992. If there are any new sources of male-sterile genes that you are aware of, please advice me, as this would be a good time to add any new source to the collection. For a list of the entries in the collection, simply E-mail me at the above address. I can send the file (14Mb) in Excel format. We continue to store the collection at -20oC and will have small (5 g) samples available for the asking. Since I have not received any reports or requests the last years, there is absolutely no summary in my report. Coordinators Report: Disease and Pest resistance genes Frank Ordon Julius Khn-Institute (JKI) Institute for Resistance Research and Stress Tolerance Erwin-Baur-Str. 27 DE-06484 Quedlinburg Germany e-mail: frank.ordon@jki.bund.de Since the advent of molecular techniques in barley research and breeding in the beginning of the 1990s a lot of major resistance genes have been mapped or even isolated. The following table aims at giving an overview on these resistance genes without claiming to be exhaustive for the genes mentioned or references cited. In the future, this table will be updated every second year. Therefore, everyone is welcome to sent missing information on already published genes or information on newly published papers to the above mentioned e-mail address. A similar overview for resistance QTL mapped in barley will be prepared for the next BGN issue. List of mapped major resistance genes in barley based on Graner (1996a), Graner et al. (2000a), Friedt and Ordon (2008), modified and updated. Resistance gene Chromsomal location Reference(s)Powdery mildew (Blumeria graminis)Mlo4HLHinze et al. 1991, Bschges et al. 1997, Tacconi et al. 2006 Mlg4HL Grg et al. 1993, Kurth et al. 2001, Korell et al. 2008 Mla1HSSchller et al. 1992, Schwarz et al. 1999,2002, Wei et al. 1999, Zhou et al. 2001, Haltermann et al. 2001, 2004, 2006, Repkova et al. 2009 mlt7HSSchoenfeld et al. 1996Mlj5HLSchoenfeld et al. 1996Mlf7HLSchoenfeld et al. 1996MlLa2HLHilbers et al. 1992, Giese et al. 1993, Mohler and Jahoor 1996Mlh6HHilbers, cit Graner et al. 1996aMlHb2HSPickering et al. 1995, Graner et al. 1996bMl(TR)5HFalak et al. 1999Mlh6HSHilbers, cit Graner et al. 1996aMli1HLJahoor, cit Graner et al. 1996aPuccinia graminisRpg17HSHorvath et al. 1995, Penner et al. 1995, Han et al. 1999, Brueggemann et al. 2002, 2006, Mirlohi et al. 2008rpg45HLBorovkova et al. 1995, Kilian et al. 1997, Brueggeman et al. 2008, 2009, Steffenson et al. 2009Rpg55HLBrueggeman et al. 2008, 2009, Steffenson et al. 2009rpg66HSFetch et al. 2009Puccinia hordeiRph25HSBorovkova et al. 1997Rph37HSPark et al. 2003Rph41HCollins et al. 2001, Park et al. 2003, Brggemann et al. 2009Rph53HMammadov et al. 2003, 2005, 2007, Brggemann et al. 2009Rph73HSGraner et al. 2000b, Brunner et al. 2000, 2003, Scherer et al. 2005, Mammadov et al. 2007 Rph95HLBorovkova et al. 1998Rph125HLBorovkova et al. 1998, Park et al. 2003Rph142HSGolegaonkar et al. 2009Rph152HSWeerasena et al. 2004Rph162HSIvandic et al. 1998, Perovic et al. 2004Rph197HLPark & Karakousis 2002Puccinia striiformisrpsGZ4HPahalawatta & Chen 2005, Yan & Chen 2006, Rynchosporium secalisRh (Rrs1)3HLGraner & Tekauz 1996, Penner et al. 1996, Reitan et al. 2002, Genger et al. 2003Rhy3HLBarua et al. 1993Rh2(Rrs2)7HSSchweizer et al. 1995, Schmidt et al. 2001, Wagner et al. 2008, Hanemann et al. 2009Rrs44HLPatil et al. 2003Rrs136HSAbbott et al. 1995Rrs141HGarvin et al. 2000Rrs157HLGenger et al. 2005, Wagner et al. 2008Rrs16Hb4HSPickering et al. 2006Pyrenophora teresPt.a3HLGraner et al. 1996aPt.d 2HSGraner & Tekauz, unpubl., cit. Graner et al. 2000aPpt47HWilliams et al. 2004Rpt56HManninen et al. 2006Rpt65HManninen et al. 2006rpt.r6HAbu Qamar et al. 2008, also cf. Friesen et al. 2006, Grewal et al. 2008 rpt.k6HAbu Qamar et. al. 2008, also cf. Friesen et al. 2006, Grewal et al. 2008 Cochliobolus sativusRcs57HSSteffenson et al. 1996, Drader et al. 2009Typhula incarnataTi1HSGraner et al. 1996aPyrenophora gramineaRdg12HLThomsen et al. 1997Rdg27HSTacconi et al. 2001, Bulgarelli et al. 2004Heterodera avenaeHa22HSKretschmer et al. 1997, Dayteg et al. 2008Ha45HLBarr et al. 1998Barley stripe mosaic virus (BSMV)Rsm7HSEdwards & Stephenson 1996Barley yellow dwarf virus (BYDV)Ryd23HLCollins et al. 1996, Paltridge et al. 1998, Ford et al. 1998Ryd36HNiks et al. 2004Ryd4Hb3HLScholz et al. 2009Barley yellow mosaic virus (BaYMV), Barley mild mosaic virus (BaMMV)rym14HLOkada et al. 2004rym35HSSaeki et al. 1999, Werner et al. 2003arym43HLGraner & Bauer 1993, Ordon et al. 1995, Weyen et al. 1996, Stein et al. 2005, Kanyuka et al. 2005, Werner et al. 2005, Stracke et al. 2007, Tyrka et al. 2008rym53HLGraner et al. 1999a, Pellio et al. 2005, Stein et al. 2005, Kanyuka et al. 2005, Stracke et al. 2007, Tyrka et al. 2008rym71HSGraner et al. 1999brym84HLBauer et al. 1997rym94HLBauer et al. 1997, Werner et al. 2000, Werner et al. 2005rym103HLGraner et al. 1995rym114HLBauer et al. 1997, Nissan-Azzous et al. 2005, Werner et al. 2005rym124HLGraner et al. 1996arym134HLWerner et al. 2003b, Humbroich et al. 2009Rym14Hb6HSRuge et al. 2003rym156HLe Gouis et al. 2004Rym16Hb2HLRuge-Wehling et al. 2006 References: Abbott, D.C., E.S. Lagudah, and A.H.D. Brown, 1995. Identification of RFLPs flanking a scald resistance gene in barley. J Hered 86:152-154. Abu Qamar, M, Z.H. Liu, J.D. Faris, S. Chao, M.C. Edwards, Z. Lai, J.D. Franckowiak, and T.L. Friesen, 2008. A region of barley chromosome 6H harbors multiple major genes associated with net type net blotch resistance. Theor Appl Genet 117:1261-1270. Barua, U.M., K. J. Chalmers, C.A. Hackett, W.T.B. Thomas, W. Powell, and R. Waugh, 1993. Identification of RAPD markers linked to a Rhynchosporium secalis resistance locus in barley using isogenic lines and bulked segregant analysis. Heredity 71:177-184. Bauer, E, J. Weyen, A. Schiemann, A, Graner, and F. Ordon, 1997. Molecular mapping of novel resistance genes against barley mild mosaic virus (BaMMV). Theor Appl Genet 95: 1263-1269. Barr, A.R., K.J. Chalmers, A. Karakousis, J.M. Kretschmer, S. Manning, R.C.M. Lange, L. Lewis, S.P. Jeffries, and P. Langridge, 1998. RFLP mapping of a new cereal cyst nematode resistance locus in barley. Plant Breed 117:185. Borovkova, I.G., Y. Jin, and B.J Steffenson, 1998. Chromosomal location and genetic relationship of leaf rust resistance genes Rph9 and Rph12 in barley. Phytopathology 88:76-80. Borovkova, I.G., Y. Jin, B.J. Steffenson, A. Kilian, T.K. Blake, and A. Kleinhofs, 1997. Identification and mapping of a leaf rust resistance gene in barley line Q21861. Genome 40:236-241. Borovkova, I.G., B.J. Steffenson, Y. Jin, J.B. Rassmussen, A. Kilian, A. Kleinhofs, B.G. Rossnagel, and K.N. Kao, 1995 Identification of molecular markers linked to the stem rust resistance gene rpg4 in barley. Phytopathology 85:181-185. Brueggeman, R R., T. Drader, and A. Kleinhofs, 2006. The barley serine/threonine kinase gene Rpg1 providing resistance to stem rust belongs to a gene family with five other members encoding kinase domains. Theor Appl Genet 113:1147-1158. Brueggeman, R, N. Rostocks, D. Kudrna, A. Killian, F. Han, J. Chen, A. Druka, B. Steffenson, and A. Kleinhofs, 2002. The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proc Nat Acad Sci USA 99: 9328-9333. Brueggeman, R, A. Druka, J. Nirmala, T. Cavileer, T. Drader, N. Rostocks, H. Bennypaul, U. Gill, D. Kudrna, C. Whitelaw, F. Han, Y. Sun, K. Gill, B. Steffenson, and A. Kleinhofs, 2008. The stem rust resistance gene Rpg5 encodes a protein with nucleotide-binding-site, leucine-rich, and protein kinase domains. Proc Nat Acad Sci 105, 14970-14975. Brueggeman, R., .J. Steffenson, and A. Kleinhofs, 2009. The rpg4/Rpg5 stem rust resistance locus in barley resistance genes and cytoskeleton dynamics. Cell Cycle 8: 977-981. Brunner, S., B. Keller, and C. Feuillet, 2000. olecular mapping of the Rph7.g leaf rust resistance gene in barley (Hordeum vulgare L.). Theor Appl Genet 101:783-788. Brunner, S., B. Keller, and C. Feuillet, 2003. Large rearrangement involving genes and low-copy DNA interrupts the microcollinearity between rice and barley at the Rph7 locus. Genetics 164:673-683. Bschges, R., K. Hollrichter, R. Panstruga, G. Simons, M. Wolter, A. Frijiters, R. van Daelen, T. van der Lee, P. Diergaarde, J. Groendijk, S. Tpsch, P. Vos, F. Salamini, and P. Schulze Lefert, 1997. The barley Mlo gene: A novel control element of plant pathogen resistance. Cell 88:695-705. Bulgarelli, D, N.C. Collins, G. Tacconi, E. Dellaglio, R. Brueggeman, A. Kleinhofs, A.M. Stanca, and G. Vale, 2004. High-resolution genetic mapping of the leaf stripe resistance gene Rdg2a in barley. Theor Appl Genet 108: 1401-1408. Collins, N., R. Park, W. Spielmeyer, J. Ellis, and A.J. Pryor, 2001. Resistance gene analogs in barley and their relationship to rust resistance genes. Genome 44:375-381. Collins, N.C., N.G. Paltridge, C.M.Ford, and R.H. Symons. 1996. The Yd2 gene for barley yellow dwarf virus resistance maps close to the centromere on the long arm of barley chromosome 3. Theor Appl Genet 92:858-864. Dayteg, C., M. Rasmussen, S. Tuvesson, A. Merker, and A. Jahoor, 2008. Development of an ISSR-derived PCR marker linked to nematode resistance (Ha2) in spring barley. Plant Breed 127:24-27. Drader, T., K. Johnson, R. Brueggeman, D. Kudrna, and A. Kleinhofs, 2009. Genetic and physical mapping of a high recombination region on chromosome 7H(1) in barley. Theor Appl Genet 118:811-820. Edwards, M.C., and B.J. Steffenson, 1996. Genetics and mapping of barley stripe mosaic virus resistance in barley. Phytopathology 86:184-187. Falak, I., D.E. Falk, N.A. Tinker, and D.E. Mather, 1999. Resistance to powdery mildew in a doubled haploid barley population and its association with marker loci. Euphytica 107: 185-192. Fetch, T., P.A. Johnston, and R. Pickering, 2009. Chromosomal location and inheritance of stem rust resistance transferred from Hordeum bulbosum into cultivated barley (Hordeum vulgare). Phytopathology 99, 339-343. Ford, C.M., N.G. Paltridge, J.P. Rathjen, R.L. Moritz, R..J. Simpson, and R. H. Symons, 1998. Rapid and informative assays for Yd2, the barley yellow dwarf virus resistance gene, based on the nucleotide sequence of a closely linked gene. Molecular Breeding 4: 23-31. Friedt, W. and F. Ordon, 2007. Molecular markers for gene pyramiding and resistance breeding in barley In: Varshney R, Tuberosa, R. (eds.): Genomics-assisted crop improvement, Vol. 2: Genomics applications in crops. 81-101. Friesen, T.L., J.D. Faris, Z. Lai, and B.J. Steffenson, 2006. Identification and chromosomal location of major genes for resistance to Pyrenophora teres in a barley doubled haploid population. Genome 409: 855-859. Garvin, D.F., A.H.D. Brown, H. Raman, and B.J. Read, 2000. Genetic mapping of the barley Rrs14 scald resistance gene with RFLP, isozyme and seed storage protein markers. Plant Breed 119:193-196. Genger, R.K., A.H.. Brown, W. Knogge, K. Nesbitt, and J.J. Burdon, 2003. Development of SCAR markers linked to a scald resistance gene derived from wild barley. Euphytica 134:149-159. Genger, R.K., K. Nesbitt, A.H.D. Brown, D.C. Abbott, and J.J. Burdon, 2005. A novel barley scald resistance gene: genetic mapping of the Rrs15 scald resistance gene derived from wild barley, Hodeum vulgare ssp spontaneum. Plant Breed 124:137-141. Giese, H., A.G. Holm-Jensen, H.P. Jensen, and J. Jensen, 1993. Localization of the Laevigatum powdery mildew resistance gene to barley chromosome 2 by the use of RFLP markers. Theor Appl Genet 85:697-900. Grg, R., K. Hollricher, and P. Schulze-Lefert, 1993. Functional analysis and RFLP-mediated mapping of the Mlg resistance locus in barley. The Plant Journal 3:857-866. Golegaonkar, P.G., H. Karaoglu, and R. Park, 2009. Molecular mapping of leaf rust resistance gene Rph14 in Hordeum vulgare. Theor Appl Genet 119:1281-1288. Graner, A. and E. Bauer, 1993. RFLP mapping of the ym4 virus resistance gene in barley. Theor Appl Genet 86:689-693. Graner, A., E. Bauer, A. Kellermann, G. Proeseler, G.Wenzel, and F. Ordon, 1995. RFLP analysis of resistance to the barley yellow mosaic virus complex. Agronomie 15:475-479. Graner, A. and A. Tekauz, 1996. RFLP mapping in barley of a dominant gene conferring resistance to scald (Rhynchosporium secalis). Theor Appl Genet 93:421-425. Graner, A., E. Bauer, J. Chojecki, A. Tekauz, A. Kellermann, G. Proeseler, M. Michel, V. Valkov, G. Wenzel, and F. Ordon, 1996a. Molecular mapping of disease resistance in barley. In: Scoles G, Rossnagel B (eds.) Proc. V Intern. Oat Conf. & VII Intern. Barley Genetics Symp. Poster Sessions Vol. 1, Saskatoon, Canada, University Extension Press, Saskatoon, Sakatchewan, pp 253-255 Graner, A., B. Foroughi-Wehr, and A. Tekauz, 1996b. RFLP mapping of a gene in barley conferring resistance to net blotch (Pyrenophora teres). Euphytica 91:229-234. Graner, A., S. Streng, A. Kellermann, A. Schiemann, E. Bauer, R. Waugh, B. Pellio, and F. Ordon, 1999a. Molecular mapping and genetic fine-structure of the rym5 locus encoding resistance to different strains of the barley yellow mosaic virus complex. Theor Appl Genet 98: 285-290. Graner, A., S. Streng, A. Kellermann, G. Proeseler, A. Schiemann, H. Peterka, and F. Ordon, 1999b. Molecular mapping of genes conferring resistance to soil-borne viruses in barley an approach to promote understanding of host-pathogen interactions. J Plant Diseases and Protection 106: 405-410. Graner, A., W. Michalek, and S. Streng, 2000a. Molecular mapping of genes cinferring resistance to viral and fungal pathogens. Proc. 8th Int. Barley Genet. Symp, 22-27.10.2000, Adelaide Australia, Vol I, 45-52 Graner, A., S. Streng, A. Drescher, Y. Jin, T. Borovkova, and B.J. Steffenson, 2000b. Molecular mapping of the leaf rust resistance gene Rph7 in barley. Plant Breed 119:389-392. Grewal, T.S., B.G. Rossnagel, C.J. Pozniak, and G.J. Scoles, 2008. Mapping quantitative trait loci associated with barley nret blotch resistance. Theor Appl Genet 116: 529-539. Haltermann, D., F. Zhou, F. Wie, R.P. Wise, and P. Schulze-Lefert, 2001. The Mla6 coiled-coil, NBS-LRR protein cnfers AvrMla6-dependent resistance specificity to Blumeria graminis f. sp. hordei in barley and wheat. Plant Journal 25:335-348. Haltermann, D.A. and R.P. Wise, 2004. A single-amino acid substitution in the sixth leucine-rich repeat of barley MLA6 and MLA13 alleviates dependence on RAR1 for disease resistance signalling. Plant J 38:215-226. Haltermann, D.A., and R.P. Wise, 2006. Upstream open reading frames of the barley Mla13 powdery mildew resistance gene function co-operatively to down-regulate translation. Mol Plant Biol 7:167-176. Hanemann, A., G.F. Schweizer, R. Cossu, T. Wicker, and M.S. Roder, 2009. Fine mapping, physical mapping and development of diagnostic markers for the Rrs2 scald resistance gene in barley. Theor Appl Genet 119:1507-1522. Han, F., A. Kilian, J.P. Chen, D. Kudrna, B. Steffenson, K. Yamamoto, T. Matsumoto, T. Sasaki, and A. Kleinhofs, 1999. Sequence analysis of a rice BAC covering the syntenous barley Rpg1 region. Genome 42:1071-1076. Hilbers, S., G. Fischbeck, and A. Jahoor, 1992. Localization of the Laevigatum resistance gene MlLa against powdery mildew in the barley genome by the use of RFLP markers. Plant Breed 109:335-338. Hinze, K., R.D. Thompson, E. Ritter, F. Salamini, and P. Schulze-Lefert, 1991. Restriction fragment length polymorphism-mediated targeting of the m-lo resistance locus in barley (Hordeum vulgare). Proc Natl Acad Sci USA 88:3691-3695. Horvarth, D.P., L.S. Dahleen, J.A. Stebbing, and G. Penner, 1995. A co-dominant PCR-based marker for assisted selection of durable stem rust resistance in barley. Crop Sci 35:1445-1450. Humbroich, K., H. Jaiser, A. Schiemann, P. Devaux, A. Jacobi, L. Cselenyi, A. Habekuss, W. Friedt, and F. Ordon, 2009. Mapping of resistance against Barley mild mosaic virus-Teik (BaMMV) an rym5 resistance breaking strain of BaMMV in the Taiwanese barley (Hordeum vulgare) cultivar Taihoku A. Plant Breed DOI 10.111/j.1439-0523.2009.01721.x. Ivandic, V., U. Walther, and A. Graner, 1998. Molecular mapping of a new gene in wild barley conferring complete resistance to leaf rust (Puccinia hordei Otth). Theor Appl Genet 97:1235-1239. Kanyuka, K., A. Druka, D.G. Caldwell, A. Tymon, N. McCullam, and M.J. Adams, 2005. Evidence that the recessive bymovirus resistance locus rym4 in barley corresponds to the eucaryotic translation initiation factor 4E gene. Molecular Plant Pathology 6: 449-458. Kilian, A., J. Chen, F. Han, B. Steffenson, and A. Kleinhofs, 1997. Towards map-based cloning of the barley stem rust resistance genes Rpg1 and rpg4 using rice as an intergenomic cloning vehicle. Plant Mol Biol 35:187-195. Korell, M., T.W. Eschholz, C. Eckey, D. Biedenkopf, M.K.H. Kogel, W. Friedt, and F. Ordon, 2008. Development of a cDNA-AFLP derived CAPS marker co-segregating with the powdery mildew resistance gene Mlg in barley. Plant Breed 127:102-104. Kretschmer, J.M., K.J. Chalmers, S. Manning, A. Karakousis, A.R. Barr, A.K.M.R. Islam, S.J. Logue, Y.W. Choe, S.J. Barker, R.C.M. Lance, and P. Langridge, 1997. RFLP mapping of the Ha2 cereal cyst nematode resistance gene in barley. Theor Appl Genet 94:1060-1064. Kurth, J., R. Kolsch, V. Simons, and P. Schulze-Lefert, 2001. A high-resolution genetic map and a diagnostic RFLP marker for the Mlg resistance locus to powdery mildew in barley. Theor Appl Genet 102, 53.60. Le Gouis, J., P. Devaux, K. Werner, D. Hariri, N. Bahrman, D. Beghin, and F. Ordon, 2004. Rym15 from the Japanese culrivar Chikurin Ibaraki 1 is a new Barley Mild Mosaic Virus (BaMMV) resistance gene mapped on chromosome 6H. Theor Appl Genet 108: 1521-1525. Mammadov, J.A., W.S. Brooks, C.A.Griffey, and M.A.S. Maroofs, 2007. Validating molecular markers for barley leaf rust resistance genes Rph5 and Rph7. Plant Breed 126:458-463. Mammadov, J.A., B.J. Steffenson, ans M.A.S. Maroof, 2005. High-resolution mapping of the barley leaf rust resistance gene Rph5 using barley expressed sequence tags (ESTs) and synteny with rice. Theor Appl Genet 111:1651-1660. Mammadov, J.A., J.C. Zwonitzer, R.M. Biyashev, C.A. Griffey, Y. Jin, B.J. Steffenson BJ, and M.A.S. Maroof, 2003. Molecular mapping of leaf rust resistance gene Rph5 in barley. Crop Sci 43:388-393. Manninen, O.M., M. Jalli, R. Kalendar, A. Schulman, O. Afanasenko, and J. Robinson, 2006. Mapping of major spot-type and net-type netblotch resistance genes in the Ethiopian barley line CI 9819. Genome 49:1564-1571. Mirlohi, A., R. Brueggeman, T. Drader, J. Nirmala, B.J. Steffenson, and A. Kleinhofs, 2008. Allele sequencing of the barley stem rust resistance gene Rpg1 identifies regions relevant to disease resistance. Phytopathology 98:910-918. Mohler, V. and A. Jahoor, 1996. Allele-specific amplification of polymorphic sites for the detection of powdery mildew resistance loci in cereals. Theor Appl Genet 93:1078-1082. Niks, R.E., A. Habeku, B. Bekele, and F. Ordon, 2004. A novel major gene on chromosome 6H for resistance to barley against the barley yellow dwarf virus. Theor Appl Genet 109: 1536-1543. Nissan-Azzous, F., A. Graner, W. Friedt, and F. Ordon, 2005. Fine-mapping of the BaMMV, BaYMV-1 and BaYMV-2 resistance of barley (Hordeum vulgare) accession PI1963. Theor Appl Genet 110: 212-218. Okada, Y., R. Kanatani, S. Arai, and K. Ito, 2004. Interaction between Barley yellow mosaic disease-resistance gene rym1 and rym5, in the response to BaYMV strains. Breeding Science 54: 319-325. Ordon, F., E. Bauer, W. Friedt, and A. Graner, 1995. Marker-based selection for the ym4 BaMMV-resistance gene in barley using RAPDs. Agronomie 15:481-485. Pahalawatta, V. and X.M. Chen, 2005. Inheritance and molecular mapping of barley genes conferring resistance to wheat stripe rust. Phytopathology 95:884-889. Paltridge, N.G., N.C. Collins, A. Bendahmane, and R.H. Symons, 1998. Development of YLM, a codominant PCR marker closely linked to the Yd2 gene for resistance to barley yellow dwarf disease. Theor Appl Genet 96: 1170 1177. Park, R.F. and A. Karakousis, 2002. Characterization and mapping of gene Rph19 conferring resistance to Puccinia hordei in the cultivar Reka 1 several Australian barleys. Plant Breed 121:232-236. Park, R.F., D. Poulsen, A.R. Barr, M. Cakir, D.B. Moody, H. Raman, and B.J. Read, 2003. Mapping genes for resistance to Puccinia hordei in barley. Austr J Agricult Res 54:1323-1333. Patil, V., A. Bjornstad, and J. Mackey, 2003. Molecular mapping of a new gene Rrs4(CI11549) for resistance to barley scald (Rhynchosporium secalis). Mol Breed 12:169-183. Pellio, B., S. Streng, E. Bauer, N. Stein, D. Perovic, A. Schiemann, W. Friedt, F. Ordon, A. Graner, 2005. High-resolution mapping of the Rym4/Rym5 locus conferring resistance to the barley yellow mosaic virus complex (BaMMV, BaYMV, BaYMV-2) in barley (Hordeum vulgare ssp. vulgare L.) Theor Appl Genet 110: 283-293. Penner, G.A., J.A. Stebbing, and B. Legge, 1995. Conversion of an RFLP marker for the barley stem rust resistance gene Rpg1 to a specific PCR-amplifiable polymorphism. Mol Breed 1:349-354. Penner, G.A., A. Tekauz, E. Reimer, G.J. Scoles, B.G. Rossnagel, P.E. Eckstein, W.G. Legge, P.A. Burnett, T. Ferguson, and J.F. Helm, 1996. The genetic basis of scald resistance in western Canadian barley cultivars. Euphytica 92:367-374. Perovic, D., N. Stein, N. Zhang, H. Drescher, M. Prasad, R. Kota, D. Kopahnke, and A. Graner, 2004. An integrated approach for comparative mapping in rice and barley with special reference to the Rph16 resistance locus J. Funct. Integr. Genomics 4: 74-83. Pickering, R.A., A.M. Hill, M. Michel, and G.M. Timmermann-Vaughan, 1995. The transfer of a powdery mildew resistance gene from Hordeum bulbosum L. to barley (H. vulgare L chromosome 2 (2L). Theor Appl Genet 91:1288-1292. Pickering, R., B. Ruge-Wehling, P.A. Johnston, G. Schweizer, P. Ackermann, and P. Wehling, 2006. The transfer of a gene conferring resistance to scald (Rhynchosporium secalis) from Hordeum bulbosum into H. vulgare chromosome 4HS. Plant Breed 125:576-579. Reitan, L., S. Gronnerod, T.P. Ristad, S. Salamati, H. Skinnes, R. Waugh, and A. Bjornstad, 2002. Characterization of resistance genes against scald (Rhynchosporium secalis (Oudem.) J.J. Davis) in barley (Hordeum vulgare L.) lines from central Norway, by means of genetic markers and pathotype tests. Euphytica 123:31-39. Repkova. J., A. Dreiseitl, and P. Lizal, 2009 New CAPS marker for selection of a Barley Powder Mildew Resistance Gene in the Mla Locus. Cereal Research Communications 37: 93-99. Ruge, B., A. Linz, G. Proeseler, R. Pickering, P. Greif, and P. Wehling, 2003. Mapping of Rym14Hb, a gene introgressed from Hordeum bulbosum and confering resistance to BaMMV and BaYMV in barley. Theor Appl Genet 107: 965-971. Ruge-Wehling, B., A. Linz, A. Habeku, and P. Wehling, 2006. Mapping of Rym16 Hb, the second soil-borne virus-resistance gene introgressed from Hordeum bulbosum. Theor Appl Genet 113: 867-873. Saeki, K., C. Miyazaki, N. Hirota, A. Saito, K. Ito, T. Konishi, 1999. RFLP mapping of BaYMV resistance gene rym3 in barley (Hordeum vulgare). Theor Appl Genet 99:727-732. Scherer, B., E. Isidore, P. Klein, J.S. Kim, A. Bellec, B. Chalhoub, B. Keller, and C. Feuillet, 2005. Large intraspecific haplotype variability at the Rph7 locus results from rapid and recent divergence in the barley genome. Plant Cell17:361-374. Schmidt, D., M.S. Roder, H. Dargatz, N. Wolf, G.F. Schweizer, A. Tekauz, and M.W. Ganal, 2001 Construction of a YAC library from barley cultivar Franka and identification of YAC-derived markers linked to the Rh2 gene conferring resistance to scald (Rhynchosporium secalis). Genome 44:1031-1040. Schnfeld, M., A. Ragni, G. Fischbeck, and A. Jahoor, 1996. RFLP mapping of three new loci for resistance genes to powdery mildew (Erysiphe graminis f. sp. hordei) in barley. Theor Appl Genet 93:48-56. Scholz, M., B. Ruge-Wehling, A. Habeku, O. Schrader, G. Pendinen, K. Fischer, and P. Wehling, 2009. Ryd4Hb: a novel resistance gene introgressed from Hordeum bulbosum into barley and conferring complete and dominant resistance to the barley yellow dwarf virus. Theor Appl Genet 119:837-849. Schller, C., G. Backes, G. Fischbeck, and A. Jahoor, 1992. RFLP markers to identify the alleles on the Mla locus conferring powdery mildew resistance in barley. Theor Appl Genet 84:330-338. Schwarz, G., W. Michalek, A. Jahoor, and V. Mohler, 2002. Direct selection of expressed sequences on a YAC clone revealed proline-rich-like genes and BARE-1 sequences physically linked to the complex Mla powdery mildew resistance locus of barley (Hordeum vulgare L.). Plant Sci 163:307-311. Schwarz. G., W. Michalek, V. Mohler, G. Wenzel, and A. Jahoor, 1999. Chromosome landing at the Mla locus in barley (Hordeum vulgare L.) by means of high-resolution mapping with AFLP-markers. Theor Appl Genet 98:521-530. Schweizer, G.F., M. Baumer, G. Daniel, H. Rugel, and M.S. Roder, 1995. RFLP markers linked to scald (Rhynchosporium secalis) resistance gene RH2 in barley. Theor Appl Genet 90:920-924. Steffenson, B.J., P.M. Hayes, and A. Kleinhofs, 1996. Genetics of seedling and adult plant resistance to net blotch (Pyrenophora teres f. teres) an spot blotch (Cochliobolus sativus) in barley. Theor Appl Genet 92:552-558. Steffenson, B.J., Y. Jin, R.S. Brueggeman, A. Kleinhofs, and Y. Sun, 2009. Resistance to stem rust race TTKSK maps to the rpg4/Rpg5 complex on chromosome 5H of barley. Phytopathology 99, 1135-1141. Stein, N., D. Perovic, J. Kumlehn, B. Pellio, S. Stracke, S. Streng, F. Ordon, and A. Graner, 2005. The eukaryotic translation initiation factor 4E confers multialleic recessive bymovirus resistance in Hordeum vulgare (L.). The Plant Journal 42: 912-922. Stracke, S., T. Presterl, N. Stein, D. Perovic, F. Ordon, and A. Graner, 2007. Effects of introgression and recombination on haplotype structure and linkage disequilibrium surrounding a locus encoding Bymovirus resistance in barley. Genetics 175:805-817. Tacconi, G., V. Baldassarre, N.C. Collins, D. Bulgarelli, A.M. Stanca, and G. Vale, 2006. Haplotype characterization and markers at the barley Mlo powdery mildew resistance locus as tools for marker-assisted selection. Genome 49:864-872. Tacconi, G., L. Cattivelli, N. Faccini, N. N. Pecchioni, A.M. Stanca, and G. Val, 2001. Identification and mapping of a new leaf stripe resistance gene in barley (Hordeum vulgare L.) Theor Appl Genet 102:1286-1291. Thomsen, S.B., H.P. Jensen, J. Jensen, J.P. Skou, and J.H. Jrgensen, 1997. Localization of a resistance gene and identification of sources of resistance to barley leaf stripe. Plant Breed 116:455-459. Tyrka, M., D. Perovic, A. Wardynska, and F. Ordon, 2008. A new diagnostic SSR marker for selection of the Rym4/Rym5 locus in barley breeding. J Appl Genet 49:127-134. Wagner, C., G. Schweizer, M. Kraemer, A.G. Dehmer-Badani, F. Ordon, and W. Friedt, 2008 The complex quantitative barley-Rhynchosporium secalis interaction: newly identified QTL may represent already known resistance genes. Theor Appl Genet 118:113-122. Weerasena, J.S., B.J. Steffenson, and A.B. Falk, 2004. Conversion of an amplified fragment length polymorphism marker into a co-dominant marker in the mapping of the Rph15 gene conferring resistance to barley leaf rust, Puccinia hordei Otth. Theor Appl Genet 108:712-719. Wei, F., K. Gobelman-Werner, S.M. Morroll, J. Kurth, L. Mao, R. Wing, D. Leister, P. Schulze-Lefert, and R.P. Wise, 1999. The Mla (powdery mildew) resistance cluster is associated with three NBS-LRR gene families and suppressed recombination within a 240-kb DNA interval on chromosome 5S (1HS) of barley. Genetics 153:1929-1948. Werner, K., W. Friedt, and F. Ordon, 2000. Strategies for Pyramiding resistance genes against the barley yellow mosaic virus complex based on molecular markers and DH-lines. Proc 8th Int Barley Genetics Symp, Adelaide, Australia. Vol II, contrib papers: 200-202. Werner, K., W. Friedt, E. Laubach, R. Waugh, F. Ordon, 2003a. Dissection of resistance to soil-borne yellow mosaic inducing viruses of barley (BaMMV, BaYMV, BaYMV-2) in a complex breeders cross by SSRs and simultaneous mapping of BaYMV/BaYMV-2 resistance of Chikurin Ibaraki 1. Theor Appl Genet 106: 1425-1432. Werner, K., S. Rnnicke, J. Le Gouis, W. Friedt, and F. Ordon, 2003b. Mapping of a new BaMMV-resistance gene derived from the variety Taihoku A. J Plant Diseases and Protection 110: 304-311. Werner, K., W. Friedt, and F. Ordon, 2005. Strategies for pyramiding resistance genes against the barley yellow mosaic virus complex (BaMMV, BaYMV, BaYMV-2). Mol Breed 16: 45-55. Weyen, J., E. Bauer, A. Graner, W. Friedt, and F. Ordon, 1996. RAPD mapping of the distal portion of chromosome 3 of barley, including BAMMV/BaYMV resistance gene ym4. Plant Breed 115:285-287. Williams, K.J., A. Lichon, P. Gianquitto, J.M. Kretschmer, A. Karakousis, S. Manning, P. Langridge, and H. Wallwork, 2004 Identification and mapping of a gene conferring resistance to the spot form of net blotch (Pyrenophora teres f maculata) in barley. Theor Appl Genet 99: 323-327. Yan, G.P.and X.M. Chen, 2006. Molecular mapping of a recessive gene for resistance to stripe rust in barley. Theor Appl Genet 113:529-537. Zhou, F.S., J.C. Kurth, F.S. Wei, C. Elliot, G. Vale, N. Yahiaoui, B. Keller, S. Somerville, S. Wise, and P. Schulze-Lefert, 2001. Cell-autonomous expression of barley Mla1 confers race-specific resistance to the powdery mildew fungus via a Rar1-independent signalling pathway. Plant Cell 13:337-350. Coordinators report: Eceriferum genes Udda Lundqvsit Nordic Genetic Resource Center P.O. Box 41, SE-230 53 Alnarp, Sweden e-mail:  HYPERLINK "mailto:udda@nordgen.org" udda@nordgen.org No research work on gene localization has been reported on Eceriferum and Glossy genes. All descriptions in Barley Genetics Newsletter (BGN) Volume 26 and later issues are valid and up-to-date. They are also available in the International Database for Barley Genes and Barley Genetic Stocks, the Untamo database  HYPERLINK "http://www.untamo.net/bgs .They" www.untamo.net/bgs .They can also be searched through the Triticeae database GrainGenes. All the genes have been backcrossed to a common genetic background, the cultivar Bowman, by J.D. Franckowiak, Australia and are available as Near Isogenic Lines (NIL). About half of them are increased during summer 2009 for incorporation into the Nordic Genetic Resource Center (Nordgen), Sweden. The second half is going to be increased during the season of 2010. These lines are extraordinary valuable for gene mapping, valuable molecular genetical analyses of cloned mutant genes, Single Nucleotide Polymorphism (SNP) genotyping and provides a detailed understanding of the genetic composition of the barley genome. It is the idea to incorporate all Near Isogenic Lines into the Nordic Genetic Resource Center (Nordgen). Every research of interest in this field and literature references are very useful to report to the coordinator as well. Seed requests of the Swedish material can be forwarded to the coordinator  HYPERLINK "mailto:udda@nordgen.org" udda@nordgen.org or to the Nordic Genetic Resource Center (Nordgen)  HYPERLINK "http://www.nordgen.org" www.nordgen.org All Glossy genes can be requested to the Small Grain Germplasm Research Facility (USDA)ARS), Aberdeen, ID 83210, USA,  HYPERLINK "mailto:nsgchb@ars-grin.gov" nsgchb@ars-grin.gov or to the coordinator at any time. Coordinators report: Nuclear genes affecting the chloroplast Mats Hansson Carlsberg Laboratory, Gamle Carlsberg Vej 10, DK-2500 Valby, Copenhagen, Denmark E-mail: mats@crc.dk Barley mutants deficient in chlorophyll biosynthetic genes obtain a yellow or pale green phenotype. Occasionally they accumulate the substrate of the enzyme affected by the mutation. This accumulation can often be very pronounced if the plant is fed with 5-aminolevulinic acid, which is a chlorophyll biosynthetic precursor. Since the accumulated compound is a fingerprint of the mutated gene, it can be used in the classification of chlorophyll mutants. Anker Kristiansen et al. (2009) has developed a method involving multi-photon microscopy for in vivo detection of chlorophyll biosynthetic precursors in seedling plants. Barley mutants xantha-f.10 and tigrina-d.12 were involved in the study. In contrast to traditional methods, the described technique is non-destructive and the plant can be rescued for further studies. The stock list of barley mutants defective in chlorophyll biosynthesis and chloroplast development is found in Barley Genetics Newsletter (BGN) 37:37-43 and at http://www.mps.lu.se/fileadmin/mps/People/Hansson/Barley_mutants_web.pdf New reference: Anker Kristiansen, K., A. Khrouchtchova, A. Stenbaek, A. Schulz and P. E. Jensen. 2009. Non-invasive method for in vivo detection of chlorophyll precursors. Photochem. Photobiol. Sci. 8:279-286. Coordinators report: Ear morphology genes Valeria Terzi CRA-GPG Genomic Research Centre Via San Protaso 302 IT-29017 Fiorenzuola d'Arda (PC), Italy e-mail: valeria.terzi@entecra.it and A. Michele Stanca Faculty of Agricultural Science, UNIMORE-Reggio Emilia, Italy e-mail: michele@stanca.it Research on Ear Morphology Genes has been limited in the last few years. However, results on barley spike morphology and its relationship on the origin, genetic resources and cloning Nud gene are reported. The origin of six-rowed with brittle rachis-agriocrithon- has been studied to define whether such agriocrithon is wild or hybrid in nature. A cross allelism test confirmed that the six-rowed brittle barley was controlled by the vrs1 locus. Agriocrithon does not appear to represent genuinely wild population but more probably originated from hybridization between Hordeum spontaneum and six-rowed cultivated barley (Tanno and Takeda, 2004). A study was carried out to reveal morphological variation of spike shape, type and colour. A set of 39 Simple Sequence Repeats (SSR) markers was used to explore the genetic diversity of the Eritrean barley collected from small-scale farmer's field. Base on the SSR data, individual farmers fields were found to possess 97.3% of the genetic variation present in the Eritrean barleys (Backes et al. 2009). The typical barley cultivars have caryopses with adhering hulls at maturity known as covered or hulled barley. Few cultivars are a free-threshing variant called naked or hulless barley. The covered/naked caryopsis is controlled by a single locus (nud) on chromosome arm 7HL. The gene has been positional cloned and the gene expression is localized to the testa. The gene has homology to the Arabidopsis WIN1/SHN1 transcription factor gene, which is involved in the lipid biosynthesis pathway. In barley the hulled caryopsis is controlled by an Ethylene Response Factor (ERF) family transcription factor gene regulating lipid biosynthesis pathway (Taketa et al. 2008). References: Backes, G., J.Orabi, A. Wolday, A. Yahyaoui and A. Jahoor. 2009. High genetic diversity revealed in barley (Hordeum vulgare) collected from small-scale farmers fields in Eritrea. Genetic Resources and Crop Evolution 56:85-97. Taketa, S. S. Amano, Y. Tsujino, T. Sato, D. Saisho, K. Kakeda, M. Nomura, T. Suzuki, T. Matsumoto, K, Sato, H. Kanamori, S. Kawasaki and K. Takeda. 2008. Barley grain with adhering hulls is controlled by an ERF family transcription factor gene regulating a lipid biosynthesis pathway. Proc Natl Acad Sci USA 105:4062-4067. Tanno, K. and K. Takeda 2004. On the origin of six-rowed barley with brittle rachis, agriocrithon [Hordeum vulgare ssp. vulgare f. agriocrithon (berg) Bowd,], based on a DNA marker closely linked to the vrs1 (six-row gene) locus. Theor Appl Genet 110:145-150. Coordinators report: Wheat-barley genetic stocks A.K.M.R. Islam Faculty of Agriculture, Food & Wine, The University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia e-mail: rislam@waite.adelaide.edu.au The production of five different disomic addition lines (IHm, 2Hm, 4Hm, 5Hm and 7Hm) of Hordeum marinum chromosomes to Chinese Spring wheat has been reported earlier. It has now been possible to isolate disomic addition line 6Hm and work is in progress to isolate the remaining 3Hm addition line. It has also been possible to produce amphiploid of H. marinum with commercial wheats, both common (spring and winter habits) and durum in several combinations.(Islam and Colmer, unpublished). References: Islam, A.K.M.R. and T.D. Colmer. 2008. Attempts to transfer salt-and water-logging tolerances from Sea Barleygrass (Hordeum marinum Huds.) to wheat. In: Proc. 11th Int. Wheat Genet. Symp., Brisbane, Australia (in press). Coordinators report: Semidwarf genes J.D. Franckowiak Hermitage Research Station Agri-science Queensland Department of Employment, Economic Development and Innovation Warwick, Queensland 4370, Australia e-mail:  HYPERLINK "mailto:jerome.franckowiak@deedi.qld.gov.au" jerome.franckowiak@deedi.qld.gov.au A progeny of recombinant inbred lines from a cross of two Japanese barley varieties was used to study the inheritance of culm and culm internode lengths (Sameri et al., 2009). An unexpected QTL for reduced culm length (qCUL on 7HL), which affected mainly the length of the third and fourth culm internodes, was contributed by the variety Kanto Nakate Gold (OUJ518). This QTL was associated with reduced lodging in two experiments. A near-isogenic line (culm length 62.9 to 73.4 cm) in an Azumamugi background, carrying a chromosome segment containing the qCUL allele from Kanto Nakate Gold, was significantly shorter than its recurrent parent (82.9 to 89.4 cm). The F2 generation from the next backcross segregated for plant height in a Mendelian monogenic ratio. The qCUL locus was shown to be tightly linked (1.2 cM) with the codominant STS marker ABG608. Using the DNA sequence of rice mutants at the gibberellin (GA) insensitive dwarf 1 (Gid1) locus, a GA receptor, Chandler et al. (2008) demonstrated that the putative orthologue from barley is the GA sensitivity 1 (gse1) locus. Of 35 gse1 mutants evaluated, 16 carried different unique nucleotide substitutions in this sequence. Study of maximal daily elongation rate (LERmax) of the first leaf of germinated grains with different GA treatments revealed considerable variation in LERmax values, which related closely to the degree of dwarfing observed during plant growth. The gse1 mutants and their GA responses were previous described by Chandler and Robertson (1999). The gsela mutant was characterized by low alpha-amylase levels, but the mutant was responsive to GA treatments (Chandler and Robertson, 1999). The study of individual gse1 mutants demonstrated some response differences among the gse1 mutants examined (Chandler et al., 2008). Comparative genomic analysis revealed that the sdw1/denso (semidwarf 1 on 3HL) locus is in the syntenic region of the rice semidwarf gene sd1 on chromosome 1 (Jia et al., 2009). The sd1 gene encodes a gibberellic acid (GA)-20 oxidase enzyme. The ortholog of rice sd1 was isolated from barley using polymerase chain reaction. The barley and rice genes showed a similar gene structure consisting of three exons and two introns. Both genes share 88.3% genomic sequence similarity and 89% amino acid sequence identity. A single nucleotide polymorphism (SNP) was identified in intron 2 between barley varieties Baudin and AC Metcalfe with Baudin known to contain the sdw1 gene. The single nucleotide polymorphism (SNP) marker was mapped to chromosome 3H in a doubled haploid population of Baudin AC Metcalfe. Crown rot (CR, Fusarium pseudograminearum) resistance observed in the Chinese land race TX9425 based on seedling evaluations was found to be conditioned by a major QTL (Li et al., 2009). Using a doubled haploid progeny of TX9425/Franklin cross, Li et al. (2009) mapped a QTL, designated as Qcrs.cpi-3H, near the centromere on the long arm of chromosome 3H. Its effect is highly significant, accounting for up to 63.3% of the phenotypic variation with a LOD value of 14.8. The location of Qcrs.cpi-3H was coincident with a major QTL (the uzu1 gene) for reduced plant height. When the effect of PH was accounted for by covariance analysis, the Qcrs.cpi-3H QTL remained highly significant, accounting for over 40% of the phenotypic variation. The effects of the uzu1 gene on plant height were stronger in the warmer of the two environments tested. The plant height QTL associated with the sdw1 gene from Franklin was detected only in the cooler environment. References: Chandler, P.M., C.A. Harding, A.R. Ashton, M.D. Mulcair, N.E. Dixon and L.N. Mander. 2008. Characterization of gibberellin receptor mutants of barley (Hordeum vulgare L.) Molecular Plant 1:285-294. Chandler, PM, and M. Robertson. 1999. 89<XYZn+:;<=OűҨŚ|wmew|XSwew| h'>*h)h'>*B*phh'B*phh'5B*ph h'5h'h h~WhhhhCJ$aJ$h>*B*CJ$aJ$phh}yh0J'jh}yh>*B*Uphh}yh>*B*ph!jh}yh>*B*Uph h}yhhZOhCJ$aJ$h}yhCJaJ:;Ji} ~ 89:;XYZ<=$a$$a$$a$gdf%$a$gdf%gdf%$a$gd}yBCDEWs"$%7i|~6ILM|*+-g(õЭh0h'>*B*phh0h'>* h'CJh'OJQJh)h'>*B*phh0h'>*B*ph h'5h'B*phh'h'B*phh'>*B*ph==DE$%~LM,-UV$a$$a$Ebcsuv¸wfSfwB= h'5!ht=$h'B*mHnHphsH$h)h'>*B*mHnHphsH!ht=$h'B*mHnHphsHht=$h'mHnHsHh'5mHnHsHh'B*mHnHphsHh'>*B*mHnHphsHh'>*mHnHsHh'mHnHsH ht=$h'ht=$h'5!ht=$h'B*mHnHphsH ht=$h'mHnHsH h'h2Dh'>*B*phuvbcj k ! !!&"'"5"6"l""""""gd" c$a$gd" c$a$IJKqrsFWbct$ - 8 C g j k !! !%!!!!!5"6"["\"""ϸ򑉑zhMhzV0J5 hzV5hMhzV5hzVh'5mHnHsH h'B*mHnHphsH h'mHnHsH  h'0J!jh'>*B*Uphjh'>*B*Uphh'B*ph3f h'5h'B*phh'h'>*B*ph."""""A#I#N#V#$&&&&'(((((****}*********&+)+_+n+t+~+S-W-Y-Z-[-_-...yh)hzVH*mH sH hzVmH sH hMhzV6mH sH h)hzV6mH sH hMhzV6mHnHsH uhzVmHnHsH uh)hzVmH sH hMhzV6 h)hzVhzVhMhzV0J5h2DhzV0J5>*B*ph3f hzV0J5/"$$W'X'((**,,..//00226474664;5; gd" c $ a$gd" c 0^`0gd" c$a$gd" c.....////////p1u1w1}133!3'33333645555 77Y7c7i7s77777r;;;;;;k<m<´ʹ¨´¨´ݘxhzVmH sH h)hzV6mH sH h)hzVH*mH sH hf%hzV6mHnHsH uhf%hzV6mH sH hMhzVmHnHsH uhMhzVmH sH hMhzV6mHnHsH uhzVmHnHsH uh)hzVmH sH hMhzV6mH sH /m<<<<<<<3=9=m=|=====o>p>>>>>4?F?H?U?W?g?l?~???@@@@@@@@@^AAAABBDCCDDDhunhzV6mHnHuhhmhzV5mHnHuhzVmHnHu hW5hMhzV5 h'JhzVhzVhzVmHnHsH uhf%hzV6mH sH h)hzV6mH sH h)hzVH*mH sH hzVmH sH h)hzVmH sH 25;$=%=>>@@@@@AABBCCDDNEOEEEG$0^`0a$gd" cgd" c 0^`0gd" c gd" c $ a$gd" cDOEEEGFHFFF GCGGGGGHnH}HHIUJJ KvKKLLLMMUYYl[m[ $7$8$H$a$gd" c 7$8$H$gd" c$-D@&M a$gd" c$-DM [$\$a$gd" c07$8$H$^`0gd" c $7$8$H$a$gd" c$a$gd" cNNOO#O$OHOIOQOROOOOOOOOOOOOOOOOOOPPȸyl]RJJJJJhx`hW6hx`hWmH sH hx`hWmHnHsH tH hx`hWmHnHsH &hx`hW0J5PJ\mHnHsH-jhx`hW5U\mHnHsH'jhx`hW5U\mHnHsHhx`hW5\mHnHsH hx`hWhx`hW5\'hx`hW5B*\mHnHphtH $hx`hW5B*mHnHphtH P#P(PPPQQ:Q?QDQIQzQQRRRRRRRRS S=S@S_SbSSSSS5T;T=TATTT$U*U1U3U=UKUPUVVVVVVWϿhx`hWB* ]ph%hJ.hW6B* ]ph%h YhW6B* ph%hx`hWB* ph%hWh YhW6mHnHsH tH hx`hWmHnHsH tH hx`hWB*phh YhW6hx`hW6 hx`hW2WW W(X.XkXoXsXxXfYiYjYpYYYYYYYY/Z0ZCZJZZZZZZZZZ%[&[L[l[m[w[|[[[[[[[[[[[[[ٹٲh8hW6B* ph%hx`hWH*hWhx`hWH*hx`hW6]h8hW6 hx`hWhx`hWB*phhWB* ph%hx`hW6B* ph%hx`hWB* ph%hx`hWB* ]ph%hx`hW6B* ]ph%2[\\]]]]]]]__1`5`8a=aaaawb|bdddddҿҿҵҭҚtdTBT"hkhW6\mHnHsH tH hx`hW\mHnHsH tH hx`hW5\mHnHtH h8hW6B*phhx`hWB*phhx`hW5B*\ph$hx`hW0JCJOJQJ^JaJhx`hW6hx`hW6]h8hW6hx`hWB*ph^^^ hx`hWhx`hW6B* ]ph%hx`hW6B* ph%hx`hWB* ph%m[]]aaddhhKlLlppTtUtatbtxx$0^`0a$gd 0^`0gd" c $7$8$H$a$gd" c 7$8$H$gd" c0^`0gd" cgd" c$a$gd" cdeffffgghh hhhhhhhhJlKlPlUll mmmmmmmmmmmoooopppp񳦘yiiiiiiiiihx`hWH*mHnHsH tH hkhW6mHnHsH tH hJ.hWmHnHsH tH hkhW6mHnHtH hx`hWmHnHtH hWmHnHsH tH hx`hW6mHnHsH tH hx`hW]mHnHsH tH "hx`hW6]mHnHsH tH hx`hWmHnHsH tH )p0p5pppqqEtJtTtUt`tbtct1u2u9u:u@uAu v!v,v-v2v3vww w wwwwwwwwwVxWxXxxxɶ}l}l!jhx`hWUmHnHtH hx`hWmHnHtH hx`hW\mHnHtH hx`hW5\mHnHtH hx`hW5mHnHtH $jhx`hW5UmHnHtH hW5\hx`hW5\ hx`hWh#T hW6mHnHsH tH hx`hWmHnHsH tH *xxxxxx5yyyyyvz{zzzz,{-{ƶ~sk`M9'hx`hW0J5CJOJQJ^JaJ$hx`hW0JCJOJQJ^JaJhx`hB* ph%hWB* ph%hx`hWB* ph%hx`hW5B* ph%hx`hW5mHnHsH tH hWmHnHsH tH hx`hWmHnHsH tH hx`hW\mHnHsH tH "hx`hW5\mHnHsH tH hWmHnHtH !jhx`hWUmHnHtH hx`hWmHnHtH xyyzz{{v|w|G}H}~~~~z$0^`0a$gd$0-D@&M ^`0a$gd$0^`0a$gd$07$8$H$^`0a$gd-{2{{{{{{{p|q|t|v|w|||,}F}H}{}}~~~E~J~~ܼܬzvdzv\RJhx`hW\hx`hW5\hx`hW5"hx`hW5\mHnHsH tH hW hx`hWhx`hW\mHnHsH tH hWmHnHsH tH hx`hWmHnHsH tH hx`hW5mHnHsH tH hWCJOJQJ^JaJ#hx`hWCJOJQJ\^JaJ hx`hWCJOJQJ^JaJ#hx`hW5CJOJQJ^JaJ~~~~~~~~kzRTnotuyƸƨƤƔyn`nTKhx`hW0Jhx`hW5KH$\hx`hW6B*]ph000hx`hWB*ph000hWmHnHsH tH hx`hWmHnHsH tH hx`hW5mHnHsH tH hWhx`hW6hx`hW5hx`hW5mHnHsH  hx`hW hW0Jhx`hW0Jhx`hW0Jhx`hW0Jhx`hW0Jhx`hW0Jyz{|}~́΁$%;<=>@ĽwiYRRK hQxh hhhh5>*B*\phhh5B*\phhh5\hhmHnHsHhw2h5\mHnHsH h5\hw2h5\ hw2h hzh hf%5\hzh5\hWh' h hWhx`hWmHnHsH tH &hx`hW5KH$\mHnHsH tH z{|}΁<>@_`!"BC)"gdf%$a$gdf% $]a$gdf%$a$gdf% $7$8$H$a$gd$a$gd9?opv{|{΄Єф҄Ԅ؄ VWef V[\cd29>CDQVW ˆԈՈ܈ BCQRxyhmHnHsH h?&h6hQxhmHnHsH  h6hQxh6h hQxhhNh6Ly23RS]`JPŋƋ[`eo׍؍ ;GHNSTUdefmsz~ԎՎ !yz SrwhQxhmHnHsH hNh6h?&h6h hQxhUwҐ֐ِݐ%3>?@FRSiߑ$.39@ACGMڒے:=“ȓГԓ 34DEuxhqhH*hqh6hQxh6 h6h?&h6 hQxhhNh6hO*7Ǖ̕0DMǖDIї՗ۗfkŘ-1Й֙ݙޙfk !# hw2h hKVhh% h6hKVhH*hKVh6h4uh6hC{h6 hC{hhNh6 hQxhh h6B)* !"#$01MNST$0^`0a$gdf%0]0gdf% $0]0a$gdf%gdf%$a$gdf%$a$gdf%"gdf%#$/01ÛěΛ*+>?BDGHKLMNĜŜԜٜ "457GHLNOQRST_ajlvx}ŽŶŽŽŶ h@Mhh@Mh0JhRh5 hRhhbh6 hbhhmHnHsHhRh5mHnHsHh hw2hhw2h5\ hx5\>ŝǝНҝܝޝ(,@D^bz~Ҟ֞ &*<Fdfנ٠;<̾ٷٷٷٷٷٯٷhnh6 hRhhRh5 hbhhRh5mHnHsHhbhmHnHsHhh@MhB*KH$ph h0J h@Mhh@Mh0J?&'hi fg=?EFHJMNQRST./EFgûôh:hmHnHsH h;h h:hhRh6 hX0h h)h h@Mh hRh h3dh h)hhRh5h hbh>STtuէ֧xyHIst%$0^`0a$gdf%ghiknortu̦ͦHWX^hǧȧʧ̧ϧЧӧԧէ֧./cghmwy ().0:»뻳뻳仳 h3dhhRh5hnh6 hbh hnhhRhmHnHsH hRh5mHnHsH  hRhh h:hhmHnHsH@:;MNST\]egwx{} ,wxyù hw2hhw2hmHnHsH hw2h5\ h)h h:hhRh6 hbhhRh5hbhmHnHsH  h3dhhAȬɬЬѬج٬ެ߬*,89;<ABFGHIz{­ޭ-.st~<=BDPQdrstޯ߯ʽ h:hhRhmHnHsHhRh5mHnHsH h@Mh hRhhRh5 h)hh hbhH #$%&UŰưٰڰݰ߰67y{&'VW]^iktuABnp׳س dewy h)h h@MhhRh5 hRh hbhhRh5mHnHsHhbhmHnHsH h:hhH%&ݴ޴KL $^a$gd" c$a$gd" c$a$gd0]0gdf%$0^`0a$gdf%yشܴݴ޴JLTUsڳڳڳgR(hW5>*B*\mHnHphsHtH 1jhW5>*B*U\mHnHphsHtH "hN. hW5\mHnHsHtH h5hWmHnHsHtH "h5hW5\mHnHsHtH hN. hWmHnHtH hW5\mHnHtH hhZ5\mHnHtH hN. hW5\mHnHtH hW hRhh h:hs&/ ̽ $Ӻ{s{o{so{o{so{o{o{g{o{o{o{o{o{ohH&hW6hWh5hW6 hH&hWhH&hWmHnHtH hWmHnHtH hN. hWmHnHtH &hchW0J5\mHnHsHtH 1jhW5>*B*U\mHnHphsHtH (hW5>*B*\mHnHphsHtH .hN. hW5>*B*\mHnHphsHtH (L>?JKWXz{$% $a$gdxgdx 0^`0gd" c$a$gd" c$a$gd" c$¿ȿҿ8T=?OsJKVWX`aelty "()yʷh>EhW6 h>EhWh hW5 hW5h>EhW5 hx5%hW5B*\mHnHphsHtH +hl zhW5B*\mHnHphsHtH hl zhWmHnHtH hH&hW6hW hH&hW8L_twz{ %,-/01249?@AFOT[dlr #$:;Ӹܱܱܱܱܱ h?hhZh!hhZ5>*B*ph3f h=\5hHhhZ5 hhZ5hxhhZh hW5 hW5h>EhW5hW h>EhWB BjYZNOJK'(G$0^`0a$gd" cgd" c$a$gd" c$a$gd" cZ[78?DLMcd45;@HIghz{%&;< %&,-278ABEFHh k/hhZ5hV!hhZ5hhZCJaJhV!hhZ6h|ShhZ6hhZ h?hhZ hhZ6h?hhZ6KGHbc|}lm234,-F]^z{$a$gd s 0^`0gd" c$0^`0a$gd" c$a$gd" cPSZ[\]cPYZ`aflmv{}BKLRSY^`kmxz"#,-4X+,z h s5\hsh s5\h shrthhZ5 hhZ5h k/hhZ5hhZh k/hhZ6 h?hhZJ{|lm}~wx $$Ifa$gd s :$If]:gd s$a$gd sz"_dZ`|rbj~u|x49AB9>FG49AB'(nu{|ָָָָָָָָָָָhsh s6B*]phhsh s5>*B*\phhsh sB*phhsh s5B*\phhsh s6] hsh sH $Ifgd sfkd$$IflF*#$1%&&$ & t&6    44 la(Asf]]] $Ifgd s $If]gd skdp$$Iflr*W#$1%&&p& &$ & t&644 laABNezzzzz $Ifgd s{kd7$$Ifl\*W}$&&p& &~ t&644 lazzzz $Ifgd s{kd$$Ifl\*W}$&&p& &~ t&644 la,Fzzzm $If`gd s $Ifgd s{kd$$Ifl\*W}$&&p& &~ t&644 laFGSczzzz $Ifgd s{kd/$$Ifl\*W}$&&p& &~ t&644 lazzzz $Ifgd s{kd$$Ifl\*W}$&&p& &~ t&644 la *Azzzz $Ifgd s{kd$$Ifl\*W}$&&p& &~ t&644 laABP`zzzz $Ifgd s{kd'$$Ifl\*W}$&&p& &~ t&644 lazzzz $Ifgd s{kd$$Ifl\*W}$&&p& &~ t&644 la'zzzz $Ifgd s{kdw $$Ifl\*W}$&&p& &~ t&644 la'(6Ff{zzzz $Ifgd s{kd $$Ifl\*W}$&&p& &~ t&644 la{|zzzz $Ifgd s{kd $$Ifl\*W}$&&p& &~ t&644 la| ^ckl EJRS05=Jty',3y8EKR OX^emrz{ hsh shsh s6B*]phhsh sB*phXzzzz $Ifgd s{kdo $$Ifl\*W}$&&p& &~ t&644 la%7Wkzzzz $Ifgd s{kd $$Ifl\*W}$&&p& &~ t&644 laklyzzzz $Ifgd s{kd $$Ifl\*W}$&&p& &~ t&644 la zzzz $Ifgd s{kdg $$Ifl\*W}$&&p& &~ t&644 la =Rzzzz $Ifgd s{kd$$Ifl\*W}$&&p& &~ t&644 laRS`rzzzz $Ifgd s{kd$$Ifl\*W}$&&p& &~ t&644 lazzzz $Ifgd s{kd_$$Ifl\*W}$&&p& &~ t&644 la(=zzzz $Ifgd s{kd$$Ifl\*W}$&&p& &~ t&644 la=>JWlzzzz $Ifgd s{kd$$Ifl\*W}$&&p& &~ t&644 lazzzz $Ifgd s{kdW$$Ifl\*W}$&&p& &~ t&644 la3zzzz $Ifgd s{kd$$Ifl\*W}$&&p& &~ t&644 la34@Wyzzzz $Ifgd s{kd$$Ifl\*W}$&&p& &~ t&644 lazzzz $Ifgd s{kdO$$Ifl\*W}$&&p& &~ t&644 la8Rzzzz $Ifgd s{kd$$Ifl\*W}$&&p& &~ t&644 laRS_zzzzz $Ifgd s{kd$$Ifl\*W}$&&p& &~ t&644 la zzzz $Ifgd s{kdG$$Ifl\*W}$&&p& &~ t&644 la -Oezzzz $Ifgd s{kd$$Ifl\*W}$&&p& &~ t&644 laefszzzz $Ifgd s{kd$$Ifl\*W}$&&p& &~ t&644 lazzzz $Ifgd s{kd?$$Ifl\*W}$&&p& &~ t&644 la*Hfzzzzz $Ifgd s{kd$$Ifl\*W}$&&p& &~ t&644 laz{zzzz $Ifgd s{kd$$Ifl\*W}$&&p& &~ t&644 la,zzzz $Ifgd s{kd7$$Ifl\*W}$&&p& &~ t&644 la$,-qw~ JPVW.4;<x}4=CJfou|κέߟߕhsh s5\hsh s5B*\phh sh smHnHsH'hsh s6B*]mHnHphsH!hsh sB*mHnHphsH hsh shsh s6B*]phhsh sB*ph:,-:Hh~zzzz $Ifgd s{kd$$Ifl\*W}$&&p& &~ t&644 la~zzzz $Ifgd s{kd$$Ifl\*W}$&&p& &~ t&644 lazzzz $Ifgd s{kd/$$Ifl\*W}$&&p& &~ t&644 la ,AVzzzz $Ifgd s{kd$$Ifl\*W}$&&p& &~ t&644 laVWcozzzz $Ifgd s{kd$$Ifl\*W}$&&p& &~ t&644 lazzzz $Ifgd s{kd'$$Ifl\*W}$&&p& &~ t&644 la%;zzzz $Ifgd s{kd$$Ifl\*W}$&&p& &~ t&644 la;<IOozzzz $Ifgd s{kdw$$Ifl\*W}$&&p& &~ t&644 lazzzz $Ifgd s{kd$$Ifl\*W}$&&p& &~ t&644 lazzzzz $Ifgd s{kd$$Ifl\*W}$&&p& &~ t&644 lasjjjj $Ifgd skdo $$Iflr*W#$1%&&p& &$ & t&644 la}}}} $Ifgd sykd(!$$Ifl\*W#$1%&-& &$ & t&644 la(4IJ}}}} $Ifgd sykd!$$Ifl\*W#$1%&&p&& t&644 laJKZf{|}}}} $Ifgd sykdn"$$Ifl\*W#$1%&&p&& t&644 la|}}}}} $Ifgd sykd#$$Ifl\*W#$1%&&p&& t&644 la !=GHIJ$*K{|PQ_0167~*+/2κέߣߎ߄ߎ߄ߎ߄߄hsh s6]hsh s5B*\ph h s5\hsh s5\h sh smHnHsH'hsh s6B*]mHnHphsH!hsh sB*mHnHphsH hsh shsh sB*phhsh s6B*]ph4}}}} $Ifgd sykd#$$Ifl\*W#$1%&&p&& t&644 la }}} $Ifgd sykdW$$$Ifl\*W#$1%&&p&& t&644 la !<=IJJKr 0^`0gd s$0^`0a$gd sgd shkd$%$$IflF*W}$&&p&& t&6    44 la 8:?Ai`almop56ABDE yz(KZbi<hsh s6]hsh s5\h sjh sUhsh s5B*\phhsh sB*ph hsh sL;<MN~fg  q r ~    $a$gd s$0^`0a$gd s+Npqvwi8GSeg~      O p r     h }   t |  IXY^_WhkpHh s5B*\phhsh s5\hsh s5B*\phhsh sB*phhsh s6] hsh sL `a5657_`pq$a$gd/S$a$gd s$0^`0a$gd s#$)*ade6567q056˹ߵ{{{{ h/S6h "h/S6h/Sh+0h/S5>*B*ph3f h/S5h "h/S5 h/S5\ h5\h shsh s5H*\ h s5\hsh s5\hsh s6] hsh shsh sB*phhsh s5B*\ph-""y&z&**G2H288::2?3?ZC[C\C]C^C_CkClCVDWD$0^`0a$gd/S$a$gd/S $04MQ04   """"""i#o#V$[$\$$$$$)&*&j&o&&&&&''z(())) *****++C+F+++0,3,,,2-8-.."/&/j0x021@1112233333h=@h/S6h7yh/S6hwh/S6h;h/SH*hl6|h/S6h/S h/S6h[Gh/S6N3355|9999>:C:);.;f<k<>>??@AEA[C_CkClCrCsCCCCD!DWD]D^DyD}DDE"E#E!F%F8FFFFF2G?G@GGDHQHRHH III>IIIeJJKjKKKLZL_LL,MM6NOhYh/S5mHnHsHhYh/S5hJ,h/S6 h/S5hnh/S5 hx5h=@h/S6h/Shl6|h/S6JWDEEFF1G2GCHDHI IIIdJeJKKLLLLMMOOrPsP$a$gd/S$0^`0a$gd/SOOO"P&PsPP]Q%RRRSSSTT3UU{VVFWW]XXXYY%Y/YJYzYY.ZZ[Z[{[[\\\9\;\N\Q\l\m\\\\\奡 h5hh5h h`3#5h`3#h`3#5h`3#hFhqh/S6h=h/S6hIh/S5mHnHsHhIh/S5hYh/S5mHnHsH hlBh/S6h/ShYh/S5hYh/S5mHnHsH2sP\Q]QRRSS~TT2U3UzV{VEWFW\X]XIYJY-Z.Z[[\\\\gd" c$a$gd/S$0^`0a$gd/S\:\;\N\O\P\Q\m\n\\\\\\\\\\ ] ]$ ) L \ l0!*$a$gdK$ ) L \ l0!*$a$gd s$a$gd s$a$gd`3#\\\I]L]f]g]o]]]]]]]]aaaabb bgcsc±raM'hc)hNb5B*\mHnHphsH!hc)hNbB*mHnHphsH hJhNb6mHnHsH hc)hNbmHnHsH hNbmHnHsH hdhNbmHnHsH hMhNbmHnHsH !hMhNbB*mHnHphsH *h+0hNb5>*B*\mHnHph3fsH hNb5\mHnHsH hc)hNb5\mHnHsH hNb hh ]I]g]h]]]b b]bgc|wooPP$ ) L \ l0!*$a$gdK$a$gdKgdK$ ) L \ l0!*$a$gdK $$ ) L \ l0!*$a$gdK $$ ) L \ l0!*$a$gd s"$$$ ) L \ l0!*$a$gd s gchctcucddDdEddddd*h h5h5>*B*ph"jjjkkmmnnnn+n,nAnNn $If^gdK^gdK $^a$gdKNnOnrn~q $If^gdKkd&$$IfFF$ x#j T<06    4 FaOnrnsnwn{nnnnnnnnnnnnnooooooǺtgZZKh hCJmHnHsH h hCJmH sH h@hCJmH sH h@h6CJ]mH sH hW}h6CJ]mH sH hW}hCJmHnHsH hCJmH sH hW}hCJmH sH h?<hCJmHsHhKAehCJhKAeh6CJ](hW}h56CJ\]mHnHsH hW}h56CJ\]rnsnwn{nn $If^gdK^kd'$$IfF4##064 Faf4nnnnn~qqq $If^gdKkd($$IfFF$ x#j T<06    4 Fannooo~qqq $If^gdKkd($$IfFF$ x#j T<06    4 Faooooo~qqq $If^gdKkd)$$IfFF$ x#j T<06    4 Faoooooooooooopp:p;p?pcpdpfphpippppppppppppǽǴwnaWahCJmH sH hhCJmH sH hhCJ!h?<h6CJH*]mHsHh?<hCJmHnHsHh?<hCJmHsHh?<h6CJ]mHsHhW}hCJhCJmHsHhW}hCJmHsHh hCJmHnHsH h hCJmH sH h h6CJ]mH sH  ooooo~qqq $If^gdKkd9*$$IfFF$ x#j T<06    4 Faooooo~qqq $If^gdKkd*$$IfFF$ x#j T<06    4 Faoooo:p~qqq $If^gdKkd+$$IfFF$ x#j T<06    4 Fa:p;p?pBpcp~qqq $If^gdKkdU,$$IfFF$ x#j T<06    4 Facpdpipmpp~qqq $If^gdKkd -$$IfFF$ x#j T<06    4 Fappppp~qqq $If^gdKkd-$$IfFF$ x#j T<06    4 Fappppp~qqq $If^gdKkdq.$$IfFF$ x#j T<06    4 Fappppq~qqq $If^gdKkd%/$$IfFF$ x#j T<06    4 Fappppqqqq qqq!qvqqqqqqqqqqqrrʕyi\OO@yh@hCJmHnHsH h@hCJmH sH h hCJmH sH h h6CJ]mH sH h6CJ]mH sH hW}hCJmHnHsH hW}hCJmH sH (hh56CJ\]mHnHsH $hh56CJ\]mH sH hCJmH sH hhCJmH sH hh6CJ]mH sH hhCJmHnHsH q qq~q $If^gdKkd/$$IfFF$ x#j T<06    4 Faqq!q%qq $If^gdK^kd0$$IfF4##064 Faf4qqqqq~qqq $If^gdKkd1$$IfFF$ x#j T<06    4 Faqqrr;r~qqq $If^gdKkd1$$IfFF$ x#j T<06    4 Farr:r;r$$IfF4##064 Faf4EuFuJuNu`u~qqq $If^gdKkd>$$IfFF$ x#j T<06    4 Fa`uaukuouu~qqq $If^gdKkdm?$$IfFF$ x#j T<06    4 Fauuuuu~qqq $If^gdKkd!@$$IfFF$ x#j T<06    4 Fauuuuu~qqq $If^gdKkd@$$IfFF$ x#j T<06    4 Fauuvvv~qqq $If^gdKkdA$$IfFF$ x#j T<06    4 Favvv"v&v6vHvLvMvNvSvUvVvYvZvovpvqvxvvvvvvvvƼƭܑӂsdOCӑӂh h6CJ](h h56CJ\]mHnHsH h h56CJ\]hKh56CJ\]h hCJmHnHsH  hCJh h6CJH*]h6CJ]h hCJmHnHsH hCJmH sH h hCJmH sH h hCJhKh6CJ]hKhCJmHnHsH hKhCJvv"v&vMv~qqq $If^gdKkd=B$$IfFF$ x#j T<06    4 FaMvNvVvZvpv~qqq $If^gdKkdB$$IfFF$ x#j T<06    4 Fapvqvv~q $If^gdKkdC$$IfFF$ x#j T<06    4 Favvvvv $If^gdK^kdYD$$IfF4##064 Faf4vvvvv~qqq $If^gdKkdD$$IfFF$ x#j T<06    4 Favvvvvvvvvvwwwwwwww!w$w8w9w:w@wCwvwxwwwwwwwwww뾵먞ܞ܂s܂sdh h56CJ\]hihCJmHnHsH hihCJmH sH h hCJmHnHsH hCJmH sH h hCJmH sH h6CJ]hW}hCJmHnHsH h hCJmHnHsH  hCJh hCJhW}hCJhW}h6CJ]#vvvvv~qqq $If^gdKkdE$$IfFF$ x#j T<06    4 Favvwww~qqq $If^gdKkdOF$$IfFF$ x#j T<06    4 Faww!w$w9w~qqq $If^gdKkdG$$IfFF$ x#j T<06    4 Fa9w:w@wCww~qqq $If^gdKkdG$$IfFF$ x#j T<06    4 Fawwwww~qqq $If^gdKkdkH$$IfFF$ x#j T<06    4 Fawww~q $If^gdKkdI$$IfFF$ x#j T<06    4 Fawwwx+x $If^gdK^kdI$$IfF4##064 Faf4www+x,x4x>x?xBxXxYxZx[xexpxqxvxǸsisZK6*hW}h6CJ](hW}h56CJ\]mHnHsH hW}h56CJ\]h hCJmHnHsH hCJmH sH h hCJmH sH h h6CJ]mH sH (h h56CJ\]mHnHsH $h h56CJ\]mH sH h h56CJ\]h hCJmHnHsH h hCJh h6CJ](h h56CJ\]mHnHsH +x,x>x~q $If^gdKkdaJ$$IfFF$ x#j T<06    4 Fa>x?xBxFxZx $If^gdK^kdK$$IfF4##064 Faf4Zx[xpx~q $If^gdKkdK$$IfFF$ x#j T<06    4 Fapxqxvxzxx $If^gdK^kdWL$$IfF4##064 Faf4vxxxxxxxxxxxxx y y yy%y&y³~naWaG:1h32hCJh32hCJmHsHh32h6CJ]mHsHhCJmHsHhW}hCJmHsHhW}h6CJ]mHsH"hW}h5CJ\mHnHsHhW}h5CJ\mHsH$hW}h56CJ\]mHsHhW}hCJmHnHsHhW}hCJmHsHhW}h6CJ]hW}hCJmHnHsH hW}hCJmH sH hW}hCJxxxxx~qqq $If^gdKkdL$$IfFF$ x#j T<06    4 Faxxx~q $If^gdKkdM$$IfFF$ x#j T<06    4 Faxxxx y $If^gdK^kdMN$$IfF4##064 Faf4 y yyy%y~qqq $If^gdKkdN$$IfFF$ x#j T<06    4 Fa%y&yHy~q $If^gdKkdO$$IfFF$ x#j T<06    4 Fa&yGyHyIyMykyly{yyyyyyyyyyyyyyy z zzttgVLLthCJmH sH !hKh6CJH*]mH sH h6CJ]mH sH hW}hCJmHnHsH hW}hCJmH sH hW}h6CJ]mH sH hW}hCJmHnHsH hW}hCJhW}h56CJ\]h32h6CJ]mHsHh32hCJh32hCJmHsH$h32h56CJ\]mHsHHyIyMyQyky $If^gdK^kdCP$$IfF4##064 Faf4kylyy~q $If^gdKkdP$$IfFF$ x#j T<06    4 Fayyyyy $If^gdK^kdQ$$IfF4##064 Faf4yyyyy~qqq $If^gdKkdR$$IfFF$ x#j T<06    4 Fayyyy z~qqq $If^gdKkdR$$IfFF$ x#j T<06    4 Fa zzSz~q $If^gdKkd{S$$IfFF$ x#j T<06    4 FazRzSzTzYzozpzuzyzzzzzzz {6{C{G{H{I{N{R{ыtdtYtYtJ:hW}h6CJ]mH sH h32hCJmHnHsH hCJ\mH sH h32h;CJ\mH sH h32hCJ\mH sH hW}hCJhW}h6CJ]hW}hCJ\mH sH hKhCJmHnHsH hKhCJmH sH hKh6CJ]mH sH hW}hCJmHnHsH hW}hCJmH sH $hW}h56CJ\]mH sH SzTzYz]zoz $If^gdK^kd/T$$IfF4##064 Faf4ozpzuzyzz~qqq $If^gdKkdT$$IfFF$ x#j T<06    4 FazzzzH{~qqq $If^gdKkdqU$$IfFF$ x#j T<06    4 FaH{I{N{R{{~qqq $If^gdKkd%V$$IfFF$ x#j T<06    4 FaR{d{e{{{{{{{{{{{{|| ||C|G|H|I|O|S|f|g|m|q|ǺǪxmxdTGxdTGh!hCJmHsHh!h6CJ]mHsHh!hCJhCJ\mHsHh!hCJ\mHsHhW}hCJhW}hCJ\mHsHhW}hCJmHsHhW}h6CJ]mHsHh32hCJmH sH h32h6CJ]mH sH hW}hCJmHnHsH hCJ\mH sH hW}hCJ\mH sH {{{{{~qqq $If^gdKkdV$$IfFF$ x#j T<06    4 Fa{{{{|~qqq $If^gdKkdW$$IfFF$ x#j T<06    4 Fa|| ||H|~qqq $If^gdKkdAX$$IfFF$ x#j T<06    4 FaH|I|O|S|f|~qqq $If^gdKkdX$$IfFF$ x#j T<06    4 Faf|g|m|q||~qqq $If^gdKkdY$$IfFF$ x#j T<06    4 Faq|||||||||||||}}} }}}}%}&},}/}D}E}J}L}M}Q}j}Ǻr枏arrarSh@hCJ\mH sH !hW}h6CJH*]mH sH hW}hCJmH sH hW}h6CJ]mH sH hW}hCJmHnHsH hW}hCJ\mH sH h!hCJ\mHsHh!hCJmHsHh!h6CJ]mHsHh!hCJmHnHsH hCJ\mH sH h!hCJ\mH sH |||||~qqq $If^gdKkd]Z$$IfFF$ x#j T<06    4 Fa||||}~qqq $If^gdKkd[$$IfFF$ x#j T<06    4 Fa}}}}%}~qqq $If^gdKkd[$$IfFF$ x#j T<06    4 Fa%}&},}/}D}~qqq $If^gdKkdy\$$IfFF$ x#j T<06    4 FaD}E}M}Q}j}~qqq $If^gdKkd-]$$IfFF$ x#j T<06    4 Faj}k}l}x}y}~~~vql__RR ^`gdK ^`gdKgdKgdK 8gdKkd]$$IfFF$ x#j T<06    4 Faj}k}l}v}x}y}}}}}}}}}}}}}}}~~~~~~~~~#~*~-~3~8~A~D~I~N~[~d~ȴumeuhCJaJhBCJaJh!hCJaJhB5CJaJhFpT5CJaJhjf5CJaJhQ`h5CJaJh6bhmHnHsH &h5>*CJOJQJ^J,hW}h5>*CJOJQJ^J#h@h>*OJQJ^JmH sH h@hCJmHnHsH 'd~k~m~q~r~~    $-4<?GNSTYZ[߽|n`hCJaJmHnHsH hBCJaJmHnHsH #h!h6CJaJmHnHsH  h!hCJaJmHnHsH hB5CJaJmHnHsH hjf5CJaJmHnHsH #hQ`h5CJaJmHnHsH hCJaJhBCJaJh!hCJaJhjf5CJaJhQ`h5CJaJ%OP QRn<^`gdK dgdK ^`gdK$^`a$gdK "#.236;<AB€ÀĀƀˀӀԀՀ؀'+,/89>?ϾϐސϐސϐސސސސϐϾhFpT5CJaJmHnHsH #h6bh5CJaJmHnHsH hCJaJmHnHsH hBCJaJmHnHsH  h!hCJaJmHnHsH hjf5CJaJmHnHsH hB5CJaJmHnHsH #hQ`h5CJaJmHnHsH 1ȁɁ΁ρMNOPYZ\]^_adinz}   ǾǵǾǵǵǾǾhjfCJaJhph5CJaJhCJaJhFpTCJaJh!hCJaJhFpT5CJaJhjf5CJaJh6bh5CJaJ h!hCJaJmHnHsH hCJaJmHnHsH hFpTCJaJmHnHsH 4$068=ILRSUV`abfr{~уփ     *+01ºxih!hOJQJ^JaJhFpT5OJQJ^JaJhX5OJQJ^JaJh?[C5OJQJ^JaJhph5OJQJ^JaJh!hFpTCJaJhCJaJhFpTCJaJh!h6CJaJh!hCJaJh?[C5CJaJhph5CJaJhFpT5CJaJ) "'*03:=HOYZ_`aɹɩɩɩɩɩɩɩɩɹɹyqe\eh?[C5CJaJhph5CJaJhCJaJhXCJaJh!h6CJ]aJh!hCJaJh?[ChCJaJmHsHh?[ChX5CJaJmHsHh?[Ch?[C5CJaJmHsHh?[Ch5CJaJmHsHh!hOJQJ^JaJhOJQJ^JaJhXOJQJ^JaJ# ),47ADORXacfpsx{OPQR\]_bfqx  ().0t{|֯֯h!h6CJ]aJh;5CJaJhCJaJhXCJaJh!hCJaJh?[C5CJaJhph5CJaJhX5CJaJBLjψшՈ׈؈nowxz{}͉Ήщމ "01678CF۳۳ҳҳҳҳҳҳҳҳҳҳҳҳҳh!h6CJaJh'5CJaJhph5CJaJh!hCJaJh?[CCJaJh;5CJaJh?[C5CJaJh8: h5CJaJhCJaJh;CJaJ:no,-čōԏՏ $d1$gdK$d1$^`gdK ^`gdK$^`a$gdK<^`gdKÊΊъ݊   NQ~ċ﹧zzqqqzqzh1z5CJaJh'5CJaJhph5CJaJhCJaJmH sH h;CJaJmH sH "h!h6CJ]aJmH sH h!hCJaJmH sH h1z5CJaJmH sH h;5CJaJmH sH h'5CJaJmH sH hph5CJaJmH sH ,ċŋ*+,-45789:<ALPV_efklqt   #-06;=>EFKLÍčōˍ̍΍ύэ몚h'h'5CJaJmHsHh'h5CJaJmHsHh!h6CJaJh1z5CJaJhph5CJaJhCJaJh;CJaJh!hCJaJh'5CJaJ6эԍݍ udVhBCJaJmHnHsH  h!hCJaJmHnHsH hB5CJaJmHnHsH h'5CJaJmHnHsH #hph5CJaJmHnHsH hCJaJhBCJaJh!hCJaJh'hCJaJmHsHh'h'5CJaJmHsHh'h5CJaJmHsHh'hB5CJaJmHsH !#(.3;DJKPQҏӏԏՏڏۏݏޏͼͼͫͫͫͼͼxͼͼͫͼͫͼͼxͼͫͫͫhCJOJQJaJmH sH hBCJOJQJaJmH sH $h!hCJOJQJaJmH sH !hB5CJOJQJaJmH sH !h'5CJOJQJaJmH sH 'hph5CJOJQJaJmH sH  h!hCJaJmHnHsH hCJaJmHnHsH /ɐΐאܐ  ,.‘ʑБё֑בɶo\Lh}$CJOJQJaJmH sH $hu+hCJOJQJaJmH sH !h}$5CJOJQJaJmH sH hCJOJQJaJmH sH hBCJOJQJaJmH sH *h!h6CJOJQJ]aJmH sH $h!hCJOJQJaJmH sH !h'5CJOJQJaJmH sH !hB5CJOJQJaJmH sH 'hph5CJOJQJaJmH sH pq45\]op$^`a$gdK ^`gdK$^`a$gdK ^`gdK$d1$^`gdKŒВђ֒גnopqwxz{|}ʓ͓234ٷٷٷٷȤ٤n*h!h6CJOJQJ]aJmH sH hCJOJQJaJmH sH h}$CJOJQJaJmH sH $h!hCJOJQJaJmH sH !h}$5CJOJQJaJmH sH !h'5CJOJQJaJmH sH 'hph5CJOJQJaJmH sH $hu+hCJOJQJaJmH sH +45;<>?@ACIPS[^fovx|}~"&',2389ʕŽ͕ͯͯͯͧ#hBh5CJaJmHnHsHhBCJaJh!h6CJ]aJhCJaJh}$CJaJh!hCJaJhB5CJaJhph5CJaJ$h!hCJOJQJaJmH sH 7#$%8C͖Ԗ"Z[\]ʹyjyjyjyjyjyjhB5CJaJmHnHsH #hph5CJaJmHnHsH hCJaJmHnHsH hBCJaJmHnHsH #h!h6CJaJmHnHsH  h!hCJaJmHnHsH  hBhCJaJmHnHsH#hBh5CJaJmHnHsH#hBhB5CJaJmHnHsH&]hiklmnps} -0mnopvʼʢzr`#h>h5CJaJmHnHsH hCJaJhjCJaJh!h6CJaJh!hCJaJhj5CJaJh>h5CJaJhCJaJmHnHsH hjCJaJmHnHsH  h!hCJaJmHnHsH #hBhB5CJaJmHnHsH#hBh5CJaJmHnHsH%vwyz|%&()*178=>ƙǙəʙ̙ϙ֙ٙ !$+289?@Ϳ͟Ϳ#h!h6CJaJmHnHsH hCJaJmHnHsH hjCJaJmHnHsH  h!hCJaJmHnHsH #h>h5CJaJmHnHsH hj5CJaJmHnHsH >=>%&^_PQ'( d^`gdK ^`gdK$d^`gdK$^`a$gdK@A<=>DEGHJM\cijpqɛ  !$ܞܐ~l~l~l~l~l~l~]h_5CJaJmHnHsH#h_h_5CJaJmHnHsH#h_h5CJaJmHnHsHh_CJaJmHnHsH #h!h6CJaJmHnHsH h_5CJaJmHnHsH hj5CJaJmHnHsH hCJaJmHnHsH  h!hCJaJmHnHsH #h>h5CJaJmHnHsH $$+-49:<JK  #&/01=?BKRWY^_ͼ{{{{{{{{{{{h$h!hCJOJQJaJmH sH !h_5CJOJQJaJmH sH 'h>h5CJOJQJaJmH sH hCJaJmHnHsH h_CJaJmHnHsH  h!hCJaJmHnHsH  h_hCJaJmHnHsHh_5CJaJmHnHsH#h_h5CJaJmHnHsH##$%&,-/025=ELMT !&)4=ȸب|pd[d[d[d[d[d[d[h^5CJaJh>h5CJaJhCJaJmH sH h!hCJH*aJmH sH h!hCJaJmH sH h_5CJaJmH sH h>h5CJaJmH sH hCJOJQJaJmH sH h_CJOJQJaJmH sH $h!hCJOJQJaJmH sH 'h!hCJOJQJ\aJmH sH #=GHNO˟П؟\]^_ijlmorvwx{߱}hCJaJmH sH hlCJaJmH sH h!hCJaJmH sH hl5CJaJmH sH h>h5CJaJmH sH hCJaJhlCJaJh!h6CJ]aJh!hCJaJh^5CJaJh>h5CJaJ0 NOPQ[\^_`efkopuv%&'(235678:CGHMNĸਛth_h_h_h_h_h_hl5CJaJh>h5CJaJhOJQJ^JaJhlOJQJ^JaJh!hOJQJ^JaJhl5OJQJ^JaJh>h5OJQJ^JaJhCJaJmH sH hlCJaJmH sH h!h6CJaJmH sH h!hCJaJmH sH h!h:CJaJmH sH #N#,1278ʣˣ̣ͣУѣӣԣ֣٣ !$,3<=BCDّh"!5CJaJh!h6CJ]aJh"!h"!5CJaJmHsHh"!h5CJaJmHsHh"!CJaJhl5CJaJh>h5CJaJhCJaJhlCJaJh!hCJaJ9̣ͣjkUVmn./34   ^`gdK$^`a$gdK ^`gdKǤͤΤӤԤhijkpqstv}-ST߱qh"!CJaJmHnHsH #h!h6CJaJmHnHsH  h!hCJaJmHnHsH h"!5CJaJmHnHsH #hh5CJaJmHnHsH hCJaJh"!CJaJh!h6CJaJh!hCJaJh"!5CJaJh>h5CJaJ(TUV^_abcdfkty #+.9<DGOR\_ilszklnuvxy{~ձՠՠՠՠՠՠh 5CJaJh CJaJhCJaJh"!CJaJh!hCJaJh"!5CJaJh>h5CJaJ h!hCJaJmHnHsH hCJaJmHnHsH ?,-./679:<?FKUX_bluz{1234:;=>@CILQT_cdgpqvwĪǪ %/簡h 5CJaJmHnHsH #hh5CJaJmHnHsH h 5CJaJhh5CJaJhCJaJh CJaJh!hCJaJh!h6CJ]aJ?/2789<HOVYahmnst%(14@EKT[`glrwͿͥh!hCJaJhR5CJaJh 5CJaJhh5CJaJhCJaJmHnHsH h CJaJmHnHsH  h!hCJaJmHnHsH #hh5CJaJmHnHsH h 5CJaJmHnHsH 2    #&.5CDIJۭܭݭޭ #+016òòòòòòòkkkkkkkkkk'h>h5CJOJQJaJmH sH hCJOJQJaJmH sH hRCJOJQJaJmH sH $h!hCJOJQJaJmH sH !hR5CJOJQJaJmH sH 'hh5CJOJQJaJmH sH hCJaJhRCJaJh!hCJaJh!h6CJ]aJ* ݭޭuv<=op45$^`a$gdK ^`gdK$^`a$gdK$d1$^`gdK678  %&ǷǗ{oc{Shqh5CJaJmHsHhCJaJmH sH hqCJaJmH sH h!hCJaJmH sH hq5CJaJmH sH h>h5CJaJmH sH hCJOJQJaJmH sH hRCJOJQJaJmH sH $h!hCJOJQJaJmH sH 'h>h5CJOJQJaJmH sH !hR5CJOJQJaJmH sH ůƯ˯̯ͯstuv~ϰڰ:;<=EFHIJKMPWZdŽũŒŽũh!h6CJ]aJhq5CJaJhqgh5CJaJhCJaJhqCJaJh!hCJaJhqhCJaJmHsHhqh5CJaJmHsHhqhq5CJaJmHsH9doqt~ !#&25=@INZajkpqr ߿~o~o~hyQS5CJaJmHnHsH #hqgh5CJaJmHnHsH hyQShCJaJmHsHhyQShyQS5CJaJmHsHhyQShq5CJaJmHsHhyQSh5CJaJmHsHhCJaJhyQSCJaJh!hCJaJhqgh5CJaJhq5CJaJ+³˳γֳݳmnop}~ͿͿ͝y$h!hCJOJQJaJmH sH !hyQS5CJOJQJaJmH sH 'hqgh5CJOJQJaJmH sH hCJaJmHnHsH hyQSCJaJmHnHsH  h!hCJaJmHnHsH #hqgh5CJaJmHnHsH hyQS5CJaJmHnHsH *2345:;=>@CMPV]`afghǷק{ph`pTKThyQS5CJaJhqgh5CJaJhCJaJhyQSCJaJh!hCJaJhyQShCJaJmHsHhyQS5CJaJmHsHhyQShyQS5CJaJmHsHhyQSh5CJaJmHsHhCJOJQJaJmH sH hyQSCJOJQJaJmH sH $h!hCJOJQJaJmH sH *h!h6CJOJQJ]aJmH sH &',-MP1234=>@ABCEJSVbkqrwx  '2389_߻߻߻격h25CJaJh+5CJaJh+CJaJhCJaJhyQSCJaJh!h6CJaJh!hCJaJhqgh5CJaJhyQS5CJaJ?34ܸݸ?@~<=+,,-  $^`a$gdK$d1$^`gdK ^`gdK<^`gdK_b~ڸ۸ܸݸ #$)-.345U]^d&=>?@F˹˹˹˹˹˹˹˹˹˹˹˹˹˹˹'h2h5CJOJQJaJmHsHh25CJaJh+5CJaJhqgh5CJaJhCJaJh2CJaJh!hCJaJh!h6CJ]aJAFGIJLOWZadknwz=DELRY|}~ı{hCJOJQJaJmH sH h2CJOJQJaJmH sH *h!h6CJOJQJ]aJmH sH $h!hCJOJQJaJmH sH $h2hCJOJQJaJmHsH'h2h5CJOJQJaJmHsH'h2h25CJOJQJaJmHsH0:;<=CDFGHIKNVYafns~¼Ǽȼɼ)ز؎}}}}}}llllllll!hj5CJOJQJaJmH sH !h25CJOJQJaJmH sH 'hqgh5CJOJQJaJmH sH hCJOJQJaJmH sH h2CJOJQJaJmH sH *h!h6CJOJQJ]aJmH sH $h!hCJOJQJaJmH sH 'h2h5CJOJQJaJmHsH%)*+,34679<CFMPZ]ehnqz*+,-679:;<>CILT]o͹͒̀qqqqqqhj5CJaJmHnHsH #hqgh5CJaJmHnHsH *h!h6CJOJQJ]aJmH sH !hj5CJOJQJaJmH sH 'hqgh5CJOJQJaJmH sH $h!hCJOJQJaJmH sH hCJOJQJaJmH sH hjCJOJQJaJmH sH ,opuv̾־   ,9;>ILVZ[^klȿɿѿڿ    ͻͻͭͻͻͻͻͻ͑ͅ|||hN'5CJaJhqgh5CJaJhN'CJaJmHnHsH hCJaJmHnHsH hjCJaJmHnHsH #h!h6CJaJmHnHsH  h!hCJaJmHnHsH #hqgh5CJaJmHnHsH hj5CJaJmHnHsH 0   NOTUMNuv@Aef%&IJ$^`a$gdK ^`gdK$^`a$gdK&+36@CLOU\fglmLMNOVWYZ\_jqvw}   #&14;BIJOP߯hN'5CJaJmHnHsH #hqgh5CJaJmHnHsH hCJaJhN'CJaJh!h6CJ]aJh!hCJaJhN'5CJaJhqgh5CJaJ;P\_~ !"%ͿﭞͿﭞ}#h!h6CJaJmHnHsH hk_5CJaJmHnHsH hN'5CJaJmHnHsH #hqgh5CJaJmHnHsH hCJaJmHnHsH hN'CJaJmHnHsH &h!h6CJ]aJmHnHsH  h!hCJaJmHnHsH 1%4RSTU\]_`benqv}KLMNUVXY[`gjqrsu|ܴhCJaJhk_CJaJh!h6CJ]aJh!hCJaJhk_5CJaJhqgh5CJaJhCJaJmHnHsH hk_CJaJmHnHsH  h!hCJaJmHnHsH #h!h6CJaJmHnHsH 3 GUV]stuv >?@AGH߯}}oahCJaJmHnHsH hk_CJaJmHnHsH #h!h6CJaJmHnHsH  h!hCJaJmHnHsH hk_5CJaJmHnHsH #h h5CJaJmHnHsH hCJaJhk_CJaJh!h6CJ]aJh!hCJaJhk_5CJaJhqgh5CJaJ&HJKMP^ajmwzcdefnoqrtw#$%Ͼ|Ͼ|hCJaJmHnHsH hCJaJmHnHsH &h!h6CJH*aJmHnHsH #h!h6CJaJmHnHsH  h!hCJaJmHnHsH h5CJaJmHnHsH hk_5CJaJmHnHsH #h h5CJaJmHnHsH 0%&-.0136@BCKRXY^_$%,GHIJQRTUWZdgorz$%&'0134568;CƸƸưƸƸƸƗhCJaJh5CJaJhCJaJhCJaJh!h6CJ]aJh!hCJaJh5CJaJh5CJaJh h5CJaJ h!hCJaJmHnHsH ;J&'vwOP$^`a$gdK$d1$^`gdK $d1$gdK ^`gdKCFNQXbfglmVabgkp߭!h5CJOJQJaJmH sH 'h h5CJOJQJaJmH sH hCJaJhCJaJh!h6CJ]aJh!hCJaJh h5CJaJh5CJaJ=  RYZaǷǀǀǷ*h!h6CJOJQJ]aJmH sH !h [5CJOJQJaJmH sH hCJOJQJaJmH sH h [CJOJQJaJmH sH $h!hCJOJQJaJmH sH !h5CJOJQJaJmH sH 'h h5CJOJQJaJmH sH 2tuvw~MNOPWǷǷǷǕ#hZIh5CJaJmHnHsHhCJOJQJaJmH sH h [CJOJQJaJmH sH $h!hCJOJQJaJmH sH !h [5CJOJQJaJmH sH 'h h5CJOJQJaJmH sH 5WXZ[\]_dlow| !#$&)25@GLMRSʹyhCJaJhhZI h!h hZI5h h5hCJaJmHnHsH hZICJaJmHnHsH  h!hCJaJmHnHsH  hZIhCJaJmHnHsH#hZIh5CJaJmHnHsH#hZIhZI5CJaJmHnHsH/gj $)5õõõíhCJaJhZICJaJh!h6CJ]aJh!hCJaJhZI5CJaJh h5CJaJhhZI h!hh h5 hZI5;#$]^  ^`gdK$a$gdK$^`a$gdK$d1$^`gdK $d1$gdK$^`a$gdK$^`a$gdK ^`gdK57:@DEFJKLPS"#%&(+3:?@EF!򼰼zzzzzzk[kh!hCJH*aJmH sH h!hCJaJmH sH h[P5CJaJmH sH h h5CJaJmH sH h:CJaJhCJaJh[PCJaJh!h6CJaJh!hCJaJhZI5CJaJh h5CJaJhZI5:CJaJh[P5:CJaJh h5:CJaJ!"#$*,-.03;>GJQSYZ`a[\]^deghjmwzððððððððzfðððððððð'h!h5CJOJQJaJmH sH !hCJOJQJaJhmH sH !h[PCJOJQJaJhmH sH 'h!hCJOJQJaJhmH sH $h[P5CJOJQJaJhmH sH *h h5CJOJQJaJhmH sH h!hCJaJmH sH hCJaJmH sH h[PCJaJmH sH ( &')*,/7=CDIJȷ١ȷ{i{i{i{i{i{i{Zh 5CJaJmHnHsH#h h 5CJaJmHnHsH#h h5CJaJmHnHsH'hu+hCJOJQJaJhmH sH *h h5CJOJQJaJhmH sH !hCJOJQJaJhmH sH !h[PCJOJQJaJhmH sH 'h!hCJOJQJaJhmH sH $h[P5CJOJQJaJhmH sH #  vz  ͼyyyyyyyyyyynf^hCJaJhq]CJaJh!hCJaJhq]5CJaJh?p0h5CJaJhCJaJmHnHsH hq]CJaJmHnHsH #h!h6CJaJmHnHsH  h!hCJaJmHnHsH  h hCJaJmHnHsHh 5CJaJmHnHsH#h h5CJaJmHnHsH$<=>?CDFGHIKPW\adloux03jklmnophzhv56mHnHsHhzhv5mHnHsH h5hhhhCJh!h6CJ]aJhCJaJhq]CJaJhq]5CJaJh?p0h5CJaJh!hCJaJ8>?lmnp/0 Ngd$a$gdv$a$gdvgdvgd" cd^`gdK ^`gdK-.0kuz=Dhi|ٿϵٱzpa]h '7hChv0J>*B*phhChv0J>*h=Xhv0Jjt_hvU h>khvjhvUhCh>khv6hzhv6hvh=Xhv0J5j^h=Xhv5Ujhv5U hv5hzhv5hv5mHnHsHhzhv5mHnHsH# /012  MO\]s#$,23DLT]߾ hUEh"mhhh"m6hIh"m6] hIh"mhh"m5hNDh"m5mHnHsHh"m h"m5 hzhvj/bhvUhjRahvUhvh=Xhv0JjhvUjs`hvU1NO\]s$a$gd[j$0^`0a$gdv$a$gdv $H]Ha$gdv^gd"m $]a$gdv$a$gdvKLQjr8W~45=>)'9Y\klϽh9phb6mHnHsH h Ghb6mHnHsH hThb6mHnHsH hbmHnHsH h9phbmHnHsH  hb5hbhI@hb5h[j hh"m h"m6hy%h"m5h"mhh"m56/XYz~tu  gd$a$gdgd$a$gd34mn12 /01h1|h"> hbmHnHsHhbh"> hb5h?~7hb5mHnHsH hI@hb5mHnHsH hI@hb6mHnHsH h Ghb6mHnHsH hThb6mHnHsH h?~7hb6mHnHsH hbmHnHsH h9phbmHnHsH -)*Oygd[j$a$gd[jgd[j$a$gd[j$a$gd[jgd$>^`>a$gd2>@OU\`l*NO'(.=[]h4h[j5 hh[jh%h[j6h~~h[j6 h[j6] h[j5hh[j5 h[j5\h[jh"> h[jmHnHsH h[jmHnHsH hI@hb6mHnHsH hbmHnHsH h"> hbmHnHsH 4Fjk./$a$gd$-DM a$gd$a$gdgd 0^`0gd[jgd[j6;EFjkstıĖr[rIrB hZhb"hhb0J5\mHnHsH-jchhb5U\mHnHsH'jhhb5U\mHnHsHhhb5\mHnHsH hhb'hhb5B*\mHnHphtH $hhb5B*mHnHphtH hhb5\hhb5hZhb5hhbCJaJhhb5CJ\aJ hb5hbluz&39?AMo/ VWcdbcostxƿ帰hZhbH*hbhZhbH*h0hb6hZhb6 hZhb hhbhhbmHnHsH tH h0hb6mHnHsH tH hbmHnHsH tH hZhbmHnHsH tH 5679lo   x| ŲxqjbWbh*hbB*phhbB*ph h*hb hXRhb(h0hb6B*mHnHphsH tH hbB*mHnHphsH tH (hhb6B*mHnHphsH tH %h~-=hbB*mHnHphsH tH "hb6B*mHnHphsH tH (hcPAhb6B*mHnHphsH tH %hXRhbB*mHnHphsH tH !   sptp;q*B*UmHnHphsH $hVh+>*B*mHnHphsH -jhVh+>*B*UmHnHphsH hhgh+6mHnHsH h+mHnHsH h=:h+mHnHsH h=:h+5mHnHsH h+5B*mHnHphsH $h=:h+5B*mHnHphsH !xxxxxxxxy`yhyyyyyyyyyyzzz%z6zzzzzzzzzzzzzzzѮߛxqlgch h5 h"m5 h>ayh+hi;h+0JmHnHsH 'jehi;h+UmHnHsH $h=:h+>*B*mHnHphsH h(+h+0JmHnHsH 'jeh(+h+UmHnHsH jh+UmHnHsH h=:h+mHnHsH h+mHnHsH h{~mHnHsH &zzzzzzzzz{){*{+{,{-{.{/{F{G{I{J{L{M{N{O{h: jh}yUhAJh}yhx hx5 h}y5hjhUh4h5zzz{+{,{-{.{K{L{M{N{O{gd"m&&$a$$$$a$gd}ygd}y C0P&P1h:p}y/ =!"#$% DpDyK udda@nordgen.orgyK Hmailto:udda@nordgen.orgyX;H,]ą'cDyK  udda@nordgen.orgyK 2mailto: udda@nordgen.org+DyK $jerome.franckowiak@deedi.qld.gov.auyK nmailto:jerome.franckowiak@deedi.qld.gov.auyX;H,]ą'c$$If!vh55$ 5#v#v$ #v:V l t&655$ 59/  / a$$If!vh55p5 5$ 5#v#vp#v #v$ #v:V l t&655p5 5$ 59/ / a$$If!vh55p5 5~ #v#vp#v #v~ :V l t&655p5 5~ 9/ a$$If!vh55p5 5~ #v#vp#v #v~ :V l t&655p5 5~ 9/ a$$If!vh55p5 5~ #v#vp#v #v~ :V l t&655p5 5~ 9/ a$$If!vh55p5 5~ #v#vp#v #v~ :V l t&655p5 5~ 9/ a$$If!vh55p5 5~ #v#vp#v #v~ :V l t&655p5 5~ 9/ a$$If!vh55p5 5~ #v#vp#v #v~ :V l t&655p5 5~ 9/ a$$If!vh55p5 5~ #v#vp#v #v~ :V l t&655p5 5~ 9/ a$$If!vh55p5 5~ #v#vp#v #v~ :V l t&655p5 5~ 9/ a$$If!vh55p5 5~ #v#vp#v #v~ :V l t&655p5 5~ 9/ a$$If!vh55p5 5~ #v#vp#v #v~ :V l t&655p5 5~ 9/ a$$If!vh55p5 5~ #v#vp#v #v~ :V l t&655p5 5~ 9/ a$$If!vh55p5 5~ #v#vp#v #v~ :V l t&655p5 5~ 9/ a$$If!vh55p5 5~ #v#vp#v #v~ :V l t&655p5 5~ 9/ a$$If!vh55p5 5~ #v#vp#v #v~ :V l t&655p5 5~ 9/ a$$If!vh55p5 5~ #v#vp#v #v~ :V l t&655p5 5~ 9/ a$$If!vh55p5 5~ #v#vp#v #v~ :V l t&655p5 5~ 9/ a$$If!vh55p5 5~ #v#vp#v #v~ :V l t&655p5 5~ 9/ a$$If!vh55p5 5~ #v#vp#v #v~ :V l t&655p5 5~ 9/ a$$If!vh55p5 5~ #v#vp#v #v~ :V l t&655p5 5~ 9/ a$$If!vh55p5 5~ #v#vp#v #v~ :V l t&655p5 5~ 9/ a$$If!vh55p5 5~ #v#vp#v #v~ :V l t&655p5 5~ 9/ a$$If!vh55p5 5~ #v#vp#v #v~ :V l t&655p5 5~ 9/ a$$If!vh55p5 5~ #v#vp#v #v~ :V l t&655p5 5~ 9/ a$$If!vh55p5 5~ #v#vp#v #v~ :V l t&655p5 5~ 9/ a$$If!vh55p5 5~ #v#vp#v #v~ :V l t&655p5 5~ 9/ a$$If!vh55p5 5~ #v#vp#v #v~ :V l t&655p5 5~ 9/ a$$If!vh55p5 5~ #v#vp#v #v~ :V l t&655p5 5~ 9/ a$$If!vh55p5 5~ #v#vp#v #v~ :V l t&655p5 5~ 9/ a$$If!vh55p5 5~ #v#vp#v #v~ :V l t&655p5 5~ 9/ a$$If!vh55p5 5~ #v#vp#v #v~ :V l t&655p5 5~ 9/ a$$If!vh55p5 5~ #v#vp#v #v~ :V l t&655p5 5~ 9/ a$$If!vh55p5 5~ #v#vp#v #v~ :V l t&655p5 5~ 9/ a$$If!vh55p5 5~ #v#vp#v #v~ :V l t&655p5 5~ 9/ a$$If!vh55p5 5~ #v#vp#v #v~ :V l t&655p5 5~ 9/ a$$If!vh55p5 5~ #v#vp#v #v~ :V l t&655p5 5~ 9/ a$$If!vh55p5 5~ #v#vp#v #v~ :V l t&655p5 5~ 9/ a$$If!vh55p5 5~ #v#vp#v #v~ :V l t&655p5 5~ 9/ a$$If!vh55p5 5~ #v#vp#v #v~ :V l t&655p5 5~ 9/ a$$If!vh55p5 5~ #v#vp#v #v~ :V l t&655p5 5~ 9/ a$$If!vh55p5 5~ #v#vp#v #v~ :V l t&655p5 5~ 9/ a$$If!vh55p5 5~ #v#vp#v #v~ :V l t&655p5 5~ 9/ a$$If!vh55p5 5~ #v#vp#v #v~ :V l t&655p5 5~ 9/ a$$If!vh55p5 5~ #v#vp#v #v~ :V l t&655p5 5~ 9/ a$$If!vh55p5 5$ 5#v#vp#v #v$ #v:V l t&655p5 5$ 59/ a$$If!vh5-5 5$ 5#v-#v #v$ #v:V l t&65-5 5$ 59/ a$$If!vh55p55#v#vp#v#v:V l t&655p559/ a$$If!vh55p55#v#vp#v#v:V l t&655p559/ a$$If!vh55p55#v#vp#v#v:V l t&655p559/ a$$If!vh55p55#v#vp#v#v:V l t&655p559/ a$$If!vh55p55#v#vp#v#v:V l t&655p559/ / / / a$$If!vh55p5&#v#vp#v&:V l t&655p5&9/  / aDyK %wolfgang.friedt@agrar.uni-giessen.deyK Xmailto:wolfgang.friedt@agrar.uni-giessen.de$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5##v#:V F4065#44 Ff4$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5##v#:V F4065#44 Ff4$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5##v#:V F4065#44 Ff4$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5##v#:V F4065#44 Ff4$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5##v#:V F4065#44 Ff4$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5##v#:V F4065#44 Ff4$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5##v#:V F4065#44 Ff4$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5##v#:V F4065#44 Ff4$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5##v#:V F4065#44 Ff4$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5##v#:V F4065#44 Ff4$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5##v#:V F4065#44 Ff4$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5##v#:V F4065#44 Ff4$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5##v#:V F4065#44 Ff4$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 F$$If!vh5j 5T5<#vj #vT#v<:V F065j 5T5<44 FDyK udda@nordgen.orgyK Hmailto:udda@nordgen.orgyX;H,]ą'cDyK www.untamo.net/bgs .TheyyK Xhttp://www.untamo.net/bgs .TheyyX;H,]ą'cDyK udda@nordgen.orgyK Hmailto:udda@nordgen.orgyX;H,]ą'cDyK www.nordgen.orgyK Hhttp://www.nordgen.org/yX;H,]ą'cDyK nsgchb@ars-grin.govyK Nmailto:nsgchb@ars-grin.govyX;H,]ą'c+DyK $jerome.franckowiak@deedi.qld.gov.auyK nmailto:jerome.franckowiak@deedi.qld.gov.auyX;H,]ą'cDyK www.untamo.net/bgsyK 4http://www.untamo.net/bgsDyK udda@nordgen.orgyK Hmailto:udda@nordgen.orgyX;H,]ą'cDyK nsgchb@ars-grin.govyK 6mailto:nsgchb@ars-grin.gov^( 02 0@P`p2( 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p8XV~_HmH nH sH tH H`HNormalCJ_HaJmHnHsH tH uF@F  Heading 1$@&5\mH sH uL@L  Heading 2$$@&a$5\mH sH uz@z  Heading 4"$d<@&^`,>*CJOJQJ^JmH sH tHuzDA`D Default Paragraph FontRi@R  Table Normal4 l4a (k (No List bob 'Br</v>dtext enkl%B*CJOJQJ_HmH phsH tH0U@0 ' Hyperlink>*B*BoB zVNo Language checkmHsHFB@"F zV Body Text  *$ PJtHuP1P zVBody Text CharCJPJ_HaJmH sH tH*W@A* WStrong5\DOQD Wcitation-abbreviation3JOaJ Wcitation-publication-date6Oq6 Wcitation-volume4O4 Wcitation-issue8O8 Wcitation-flpagesdOd W normaltext x<,B*CJOJQJ^JaJmH phsH tH uF^@F W Normal (Web)dd[$\$uDOD Wcitation-abbreviation2bC@b Body Text Indent$ 8h^ha$mH sH tHufP@f  Body Text 2$ 8dha$CJOJQJ^JmH sH tHuS@ Body Text Indent 3%$$dx^`a$OJQJaJhmHsHtHuR@ Body Text Indent 2" $d<^`a$CJOJQJ^JmH sH tHuB>@B +Title!$a$5aJmHsHtHu:Z@": # Plain Text"$a$uN1N "Plain Text CharCJ_HaJmH sH tH 4@B4%}yHeader $ H$BQB$}y0 Header CharCJaJmHnHu4 @b4'}y0Footer & H$BqB&}y0 Footer CharCJaJmHnHuPK![Content_Types].xmlj0Eжr(΢Iw},-j4 wP-t#bΙ{UTU^hd}㨫)*1P' ^W0)T9<l#$yi};~@(Hu* Dנz/0ǰ $ X3aZ,D0j~3߶b~i>3\`?/[G\!-Rk.sԻ..a濭?PK!֧6 _rels/.relsj0 }Q%v/C/}(h"O = C?hv=Ʌ%[xp{۵_Pѣ<1H0ORBdJE4b$q_6LR7`0̞O,En7Lib/SeеPK!kytheme/theme/themeManager.xml M @}w7c(EbˮCAǠҟ7՛K Y, e.|,H,lxɴIsQ}#Ր ֵ+!,^$j=GW)E+& 8PK!Ptheme/theme/theme1.xmlYOo6w toc'vuر-MniP@I}úama[إ4:lЯGRX^6؊>$ !)O^rC$y@/yH*񄴽)޵߻UDb`}"qۋJחX^)I`nEp)liV[]1M<OP6r=zgbIguSebORD۫qu gZo~ٺlAplxpT0+[}`jzAV2Fi@qv֬5\|ʜ̭NleXdsjcs7f W+Ն7`g ȘJj|h(KD- dXiJ؇(x$( :;˹! I_TS 1?E??ZBΪmU/?~xY'y5g&΋/ɋ>GMGeD3Vq%'#q$8K)fw9:ĵ x}rxwr:\TZaG*y8IjbRc|XŻǿI u3KGnD1NIBs RuK>V.EL+M2#'fi ~V vl{u8zH *:(W☕ ~JTe\O*tHGHY}KNP*ݾ˦TѼ9/#A7qZ$*c?qUnwN%Oi4 =3ڗP 1Pm \\9Mؓ2aD];Yt\[x]}Wr|]g- eW )6-rCSj id DЇAΜIqbJ#x꺃 6k#ASh&ʌt(Q%p%m&]caSl=X\P1Mh9MVdDAaVB[݈fJíP|8 քAV^f Hn- "d>znNJ ة>b&2vKyϼD:,AGm\nziÙ.uχYC6OMf3or$5NHT[XF64T,ќM0E)`#5XY`פ;%1U٥m;R>QD DcpU'&LE/pm%]8firS4d 7y\`JnίI R3U~7+׸#m qBiDi*L69mY&iHE=(K&N!V.KeLDĕ{D vEꦚdeNƟe(MN9ߜR6&3(a/DUz<{ˊYȳV)9Z[4^n5!J?Q3eBoCM m<.vpIYfZY_p[=al-Y}Nc͙ŋ4vfavl'SA8|*u{-ߟ0%M07%<ҍPK! ѐ'theme/theme/_rels/themeManager.xml.relsM 0wooӺ&݈Э5 6?$Q ,.aic21h:qm@RN;d`o7gK(M&$R(.1r'JЊT8V"AȻHu}|$b{P8g/]QAsم(#L[PK-![Content_Types].xmlPK-!֧6 +_rels/.relsPK-!kytheme/theme/themeManager.xmlPK-!Ptheme/theme/theme1.xmlPK-! ѐ' theme/theme/_rels/themeManager.xml.relsPK]  ::YYY\".m<DNPW[dpx-{~yyw#g:ys$z|3O\scgOnoprrtvvwvx&yzR{q|j}d~ċэ4]v@$=NT/6d_F)oP%H%CW5! @AB="5;GNm[xz)%L G{AFA'{k R=3R ez,~V;J|  WDsP\ ]gcfjNnrnnnoooo:pcppppqqqq;rWr[rlrrrr0ssss t,t`tttttEu`uuuuvMvpvvvvvw9wwww+x>xZxpxxxx y%yHykyyyy zSzozzH{{{|H|f|||}%}D}j}n  JN?@ABCDEFHIJKLMNOPQRSTUVWXYZ[\]_`abcdefghijklmopqsuwz|}!'*,.04?CJrDE>Eijjjkkklllzmmm7nOn0{Ybe1:=]QQQv1 3Dz*Th.Rh +TgXXXXXXXXXXXXXXXXXXXXXXXXXXX:RU\!@  @ 0(  B S  ?H0(   OLE_LINK2 OLE_LINK3 OLE_LINK1 OLE_LINK4 abs_englishpmid_green_19034412DDWEWE^WUBEBE^E^E^Wzá] ġ,^ šl^ ơl] ǡ,] ȡ\ ɡZ ʡZ ˡl\ ̡\ ͡,\ Ρ[ ϡ,[ Сl[ ѡ[ ҡlZ ӡ,Z ԡY աY ֡lY ס,Y ءX ١X ڡlX ۡ,X ܡW ݡW ޡlW ߡ,W ࡎV ᡎV ⡎lV 㡎,V 䡎U 塎U 桎lU 硎,U 衎T 顎T ꡎlT 롎,T 졎S S lS ,S Q Q  D    D    D    D    D    D       D      D    D    D   D    D    ! "D # $ % &D ' ( )D * + , -D . /D0 00 1D1 21 3D2 43 53 62 74 84 94 :5 ;D5 <5 =5 >6 ?D6 @6 A6 B7 CD7 D7 E7 F8 GD8 H8 I8 J9 KD9 L9 M9 N: OD: P: Q: R; SD; T; U; V< WD< X< YD= Z= [D> \> ]> ^? _D? `? a bD c dĀ e fD g hā i jD k lĂ m nD o pă q rD s tĄ u vD w xą y zD { |Ć } ~D  ć  D  Ĉ  D  ĉ  D  Ċ  D  ċ  D  Č  D  č  D  Ď  D  D  Đ  D  đ  D  Ē  D  ē  D  Ĕ  D  ĕ  D  Ė  D  ė  D  ¢Ę â ĢD Ţ Ƣę ǢD Ȣ ɢĚ ʢ ˢD ̢ ͢ě ΢ ϢD Т ѢĜ Ң ӢD Ԣ բĝ ֢ עD آ ٢Ğ ڢ ۢD ܢ ݢ, ޢl ߢ ࢎ ᢎ, ⢎l 㢎 䢎 墎, 梎l 碎 袎 颎, ꢎl 뢎 좎 , l   , l   , l   , l   , l   , l   , l    ,  l      , l   , l   , l   , l     L   ! " #L $ % & 'L ( ) * +L , - . /L 0 1 2 3L 4 5 6 7L 8 9 : ;L < YYbiioo;;}  s i i q z P P V j j y XX`i11;>E x:G ==%%'::H \$q$q$%%,,3-./Q///36667]D]DjDDDDDPPTWW g gssvvvLءء`Ų-2CCDD WWW^>>>Ell$1111333<@BB$FHHHIII%J%J,JPPPCQCQLQSSSTTTTT"T"TTTUVYWYWiijkk{lwYbbĒĒtty&&&nnx77@^^fkrz%-6'8CCKJJSc::;BJSee!)2      !#"$)%&'(*+-,./01263457;89:<=>?@ABCDEFGHIJKLMNOPQRSTUVZWXY[]\^_`acbdefghijklmnopqrsutvwyxz{|}~      !#"$%&'()+*,.-/01234567;89:<=>?@ABDCEFGHIJKLMNOPQRSTUVWYXZ[\]^_`abcdefghijklomnpqrstuxvwyahhxxxxBB&&| o x U ` ` w ~ ^gww9=CHH CK CC++4DRR a$v$v$%%,,7-."/T//036667iDtDtDDDDDPPTWW(g(gssvvvYݡݡb#˲ 18GGGG ]`ggDGNNrr$1112333>@BB&FHHHIII*J4J4JPPPJQSQSQSSSTTT!T!T(T(TTTVV`W`Wjjjkk{u}akkǒǒx**$**v?FFdllqy$,5<<%..CIPPMM  [g""CCAIRYkk (18  !#"$&'()%*+-,./012456379:;8<=>?@ABCDEFGHIJKLMNOPQRSTUVXYZW[]\^_`acbdefghijklmnopqrsutvwyxz{|}~      !#"$%&'()+*,.-/012345679:;8<=>?@ABDCEFGHIJKLMNOPQRSTUVWYXZ[\]^_`abcdefghijklnompqrstuwxvy ;w*urn:schemas-microsoft-com:office:smarttagsaddress:v*urn:schemas-microsoft-com:office:smarttagsStreet9R*urn:schemas-microsoft-com:office:smarttagsState>^*urn:schemas-microsoft-com:office:smarttags PostalCodeC*urn:schemas-microsoft-com:office:smarttagsmetricconverter>$*urn:schemas-microsoft-com:office:smarttags PersonName9y*urn:schemas-microsoft-com:office:smarttagsplace8i*urn:schemas-microsoft-com:office:smarttagsCityBu*urn:schemas-microsoft-com:office:smarttagscountry-region=x*urn:schemas-microsoft-com:office:smarttags PlaceType=z*urn:schemas-microsoft-com:office:smarttags PlaceName O 1.5 cM10 a11, a12 a14 a3 a3.2 cM3.62 cM3.9 in4 a45C5 g50 cM8 a9 ala Cerealicoltura ProductIDzyxwvuyyuyuuzzzxyiuyuiyuuyyi^uyi^uyxxwviR^uiy^uzzzxyiR^uyiR^uxzyuxzyuxziyuzzzxyuzzzxyu$yzzzxwviyu$yxzuuyyu  yiRyyiRiRyuyuyuyiyuyzyxiyyiyiyRy yiyRyiuyiRuyzxuyuyuyzzyxxiyiR^uuuyuuyiyiyiRiyiRiyiRiyiRyyiyR^uiyyiuy iyRyiyuyyuyzyxiyuiyuxyziyuiyuwviyRuyiy yyuiyRyuyiuiyiyuyuyizyxyuyyiuyyiRiyuiyyzxyiuyuzzzxyuyzzzxiyu$yuyiuuyyuxyzuyiyuiuyiyiyzxyuzzzxyuzzzxyuzzzxyzzxzzzxiyR^uJHQ/:" +!4!!!!!" "##%%o&t&''p(y((())'*+*B*I*J*Q*W*a*++---...1 111)101233 34$4a4m4444444444 5K5X55555DDCEGEwF~F҇ՇIPpy (ĤǤΤϤդ֤mnce;=00OOOOPPP:P;PXPYP}P]QQQQRRVVVV7W?WMWXWjWWRZXZiZoZtZyZZZZZZZZZZ[ [ [[[%[9[;[g[i[{[~[[[\\2\3\R\S\r\s\\\\\\\\\]]6]7];]?]F]L]R]a]]]]]]]^^F^H^|^~^^^^^^^^^ __(_)_V_X_n_p________```6`7`i`j`o`p`s`t```````aaaaKaOaeafaaaa0bDbObTbbbbbbcc ccc#c'c-c3c6ccDcLcRcccccccccc ddddKdMd`dbdndodvdddddddddddddddeEeFeWeYeseyeeeeeeeeeeeef-fUfVfof{fffffff!gSggggggg"h$hJhLhihjhkhxhhhhhhhhii i2i>iJiLiQiSikiriiiiiiiiiiii jj@jEjtjyjjjjjjjkkbkgkhklkn'n?nInnnnnnnnoo"ooooooooooooobppp~ppppppppppppTWhl49;@jn6;fm',.3*05?FPU_py9@5;v Ez*iXc33556689;<>?m233556689;<>?m\|<Z = y-J y%%(B(81[1D3L3|66s7u76888I9K9 :o;;;;??@@JAbAdA8BBCCJCDD0DDDgp~p&q8qrrzssv+vv w=wIwJw]wx yy}},AhH%O՚7uHءo'Hx ' @!Dz~ mnR2= IuLdce;= SstN#V#d%%++0099X;;.@V@ASADEEEGGcHHHHHHHII"I$I8IIIPP]QQVVVV1WbWZZ[\;]]]^^^p_x___`abbc#cLcacbcddbddddf"g+gkhhhhJivis t)uXu{†d̈sUGmnv Ez*i0Ek.?|Rm(47^ADq ,-X{1233556689;<>kmJDDmnce;=00]QQv Ez*iUTj "!FqW=\`3#}$f%\.+0L0 '7B?[CZIK;O/SyQSFpTzVUYhZ [q]k_" c8djfj[j"m sv}y{~Xb1z4v<[P': '~B_lpRCNb! <.2D:vx+^B+2AJ;L4N'x6 35@@w./==!"$';<?@$L@8t@@@@ @0d@4t@N@@UnknownG* Times New Roman5Symbol3. * ArialI. ??Arial Unicode MS9CG TimesA BCambria Math"1hCfCf%&L5L5!x4--2qHP ?<.2!xxUdda LundqvistnoneOh+'0  8 D P \hpxUdda Lundqvist Normal.dotmnone2Microsoft Office Word@@Rv%Ǎ@1@15L՜.+,D՜.+,, hp|  -  Title| 8@ _PID_HLINKSA4eNmailto:nsgchb@ars-grin.gov 5Kmailto:udda@nordgen.org HDHhttp://www.untamo.net/bgs "/E/pmid:19034412 !AB+mailto:jerome.franckowiak@deedi.qld.gov.au e?mailto:nsgchb@ars-grin.gov b6<http://www.nordgen.org/ 59mailto:udda@nordgen.org }u6 http://www.untamo.net/bgs .They 53mailto:udda@nordgen.org T;0,mailto:wolfgang.friedt@agrar.uni-giessen.de -Nhttp://www.springerlink.com.proxybz.lib.montana.edu/content/?Author=Ann+Corey bg*Thttp://www.springerlink.com.proxybz.lib.montana.edu/content/?Author=Stephen+Machado  'Rhttp://www.springerlink.com.proxybz.lib.montana.edu/content/?Author=Patrick+Hayes aq$Shttp://www.springerlink.com.proxybz.lib.montana.edu/content/?Author=Dalma+Castillo *2!Ohttp://www.springerlink.com.proxybz.lib.montana.edu/content/?Author=Ivan+Matus q?Whttp://www.springerlink.com.proxybz.lib.montana.edu/content/?Author=Alejandro+del+Pozo &:Shttp://www.springerlink.com.proxybz.lib.montana.edu/content/?Author=Luis+Inostroza m#mailto:Arnis.Druka@scri.sari.ac.uk g;javascript:AL_get(this, 'jour', 'Funct Integr Genomics.'); @qhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Collins%20NC%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus Ayhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Baumann%20U%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus $ http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Br%C3%BBl%C3%A9-Babel%20A%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus ? http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Chen%20A%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus !A+mailto:jerome.franckowiak@deedi.qld.gov.au )Zmailto: udda@nordgen.org 5mailto:udda@nordgen.org   !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxz{|}~Root Entry F@dData Ef1TableyWordDocumentESummaryInformation(DocumentSummaryInformation8CompObjy  F'Microsoft Office Word 97-2003 Document MSWordDocWord.Document.89q