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Morphological and Physiological Traits

1. Gross Morphology: Spike characteristics
      1.1. Squarehead/spelt
Q. Add synonym ‘Ap2-5A’.
 c: Move the last sentence under ma: to a new section c: and Add: GenBank 
  AY02956.1.  

Add note: The pleiotropic features of the Q locus include effects on glume toughness, threshability, rachis fragility, spike 
length, flowering time, and plant height {11342}.

At the end of section: add two references, i.e., ‘{11192, 11344}. Final spike and reproductive morphology is affected by 
the Q/q sequence and its regulation by miR172 {11344} along with direct or indirect interaction with the homoeologues 
{11344}.

Homoeologues of Q were described in {11192}. Both have miRNA172 target sites close to the 3’ ends of the coding 
region. These genes were referred to as Ap2-5B, a transcriptionally active pseudogene, and Ap2-5D, that encodes a func-
tional protein that contributes to suppression of the speltoid phenotype {11342}. Reduced height gene Rht23, a mutation-
ally derived allele in NAUH164, was caused by a SNP (G3147A, Ala416Thr) within the miR172 target site in 5Dq that 
permitted up-regulation of Ap2-5D due to down-regulation of miR172 in leaves, stems and spikes {11345}.

17. Crossability with Rye and Hordeum and Aegilops spp.
 kr5 [{11387}]. skr {11352}, {11352}. 5BS {11352}.
 su: Courtot (Fukuhokomugi 5B) {11352}.
 v:   Balthazar-crossable {11352}; Deucendeu {11352}; Ornicar-crossable {11352}.
Balthazar-crossable and Ornicar-crossable probably also carry kr1 {11352}.
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44. Height 
   44.2. Reduced Height: GA-sensitive
Rht-B1c. c:   Rht-B1c carries a 2,026-bp insertion of a terminal repeat transposons in miniature (TRIM) 
  insertion at position 147 bp relative to Rht-B1a; this leads to an additional 30 amino acids 
  in the DEELLA domain affecting affinity between GID1 and Della {11390}. Genbank 
  JN857970 (gDNA), JN859791 (cDNA) {11390}.
Rht14. ma:   Add: Mapped to genomic region 383–422 Mb flanked by GA20xA9 and Xwmc753-6A 
  {11372}.
Rht25.  Add synonym: 5Dq {11345}.
 c:   NAUH164 has a G3147A (Ala416Thr) SNP mutation relative to its Sumai 3 parent, AP2-D 
  is the likely candidate for Rht23 {11345}.

46. Hybrid Weakness 
   46.1. Hybrid necrosis
Ne1. ma:   Ne1 – 11 cM – Xgwm639-5B {11343}.
  
Ne2. ma:   Xbarc7-2B – 3 cM – Ne2 – 6 cM – Xwmc344-2B {11343}.

49. Leaf Characteristics
Re-organization
   49.1. Leaf erectness  Currently: 49. Leaf Erectness
   49.2. Leaf tip necrosis  Currently: 50. Leaf Tip Necrosis
   49.3. Seedling leaf chlorosis Currently: 64. Seedling leaf chlorosis

NEW:
   49.4. Early leaf senescence
els1 {11326}. 2BS {11326}.
 v:   ZK331 / Xiangmai 99171 // 2*Lumai 30 Line 114 {11326}.
 ma:   WGGB305 – 0.3 cM – els1/WGGB302 – 1.2 cM – WGGB303/WGGB304/WGGB306 – 
  0.6 cM – Xbarc92-2B {11326}.
The els1 ‘mutant’ was detected in an F4 population. Because the parents had a normal phenotype, complementary genes 
were likely involved. The similar location of ELS1 to the NE1 locus in chromosome 2BS and similar phenotype suggests 
that this gene may be Ne2. See 49. Hybrid Weakness; 49.1. Hybrid necrosis

53. Male Sterility
53.1. Chromosomal
ms2. ma:  Mapped to a 0.05-cM region flanked by Xsauw27-4D and Xsdauw29-4D {11388}.
 c:  Ms2 has a long terminal-repeat in miniature (TRIM) transposon at position –314 to –310 {11388}. Genbank 
      KX585234 {11388}. 
The TRIM element acts as an enhancer that activates anther-specific transcription of the Ms2 allele {11388, 11389}. Ms2 
induced male sterility in barley and Brachypodium {11388} as well as triticale {597, 11388}.

57. Meiotic Characters
   57.2 Pairing homoeologous
Ph1b. ma:   Dualplex marker Xwgc2111 + Xwgc2049 behaves like a co-dominant marker {11359}.

Add note: The Ph1b deletion involves a region of at least 60,014,523 bp {11359}.

   57.4 Asynapsis/desynapsis
A putative gene for desynapsis designated Ddes2 was placed between Xwmc325-3B and wPt-8983 in deletion bin 3BL7-
0.63-1.00 by mapping of deletion hybrids {11339}. There is no mutant stock to represent this gene first reported in CS 
nullisomic 3B by Sears {1293}.
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70.  Response to Vernalization
Insert above Vrn-B3:
Vrn-A3.  7AS.
An earlier variant of T. turgidum subps. dicoccum line TN28 was caused by a novel allele. Line TN26 lacked a 7-bp 
insertion, including a cis-element GATA box, in the Vrn-A3 promoter region {11370}.

80. Yield and Yield Components
   80.7. Spikelet number/ear
WAPO1 {11383}. Wheat Ortholog of APO1. 
   WAPO-A1 {11383}. TraesCS7A02G481600. 7AL {11383} 
 ma: IWGSC RefSeq v1.0 coordinates 674,081,462 – 674,082,918.
 Wapo-A1a {11383}.  Low number of spikelets per spike (115-bp deletion in promoter and D384N amino 
   acid change) {11383}.    
 v: RAC875 {11383}.
 tv: Kronos {11383}.
 Wapo-A1b {11383}.  High number of spikelets per spike (C47F amino acid change) {11383}.
 v:   Berkut {11383}; Chinese Spring {11383}.
 Wapo-A1c {11383}.  Low number of spikelets per spike (115-bp deletion in promoter and D384N amino 
   acid change) {11383}.    
 v:   AGS2000 {11383}; LA95135 {11383}.
 tv:   PI 519639 {11383}.
 Wapo-A1d {11383}.  Low number of spikelets per spike {11383}.
 tv: Langdon {11383}; Rusty {11383}.

Ful2 {11384}.
Loss of function mutation in gene FUL-A2 (Kronos mutant T4-837) and FUL-B2 (Kronos mutant T4-2911) resulted in 
significant increases in spikelet number {11384}.

Vrn1 {11384}. Loss of function mutation in gene VRN-A1 (Kronos mutant T4-2268) and VRN-B2 (Kronos mutant T4-
2619) resulted in significant increases in spikelet number {11384}.

Pathogenic Disease/Pest Reaction 

89.   Reaction to Bipolaris sorokiniana
Add note at the beginning of section: This pathogen likely harbours Tox A in common with Parastagonospora nodurum, 
Parastagonospora avenaria tritici, and Pyrenophora tritici-repentis {11375}.
Sb2 {11375}. QSb.bhu-5B {11375}  5BL {11375}. 
  bin: 5BL1-0.55-0.75.
  v: Ning 8201 {11375}; Yangmai 6 {11375}; YS116 {11375}.
  ma: Xgwm639-5B – 1.4 cM – Sb2 – 0.06 cM – Xgwm1043-5B {11375}.
sb2.  Tsn1 {11376}. v:   Duster {11376}; Sonalika {11375}. Presumably all genotypes with Snb1.

90. Reaction to Blumeria graminis DC. 
   90.1. Designated genes for resistance
Pm4e.  ma: Add: Xwgrc763-2A – 0.13 cM – Pm4e/Xwgrc872-2A/Xwgrc869-2A – 0.58 cM – 
   Xwgrc982-2A, a region of about 6.1 Mb {11335}.
Pm8.  ma: An STS marker distinguished Pm8 from Pm17 {0186}. Pm8 is located between 
   Gli/Glu3 and rust resistance genes Sr31, Lr26 and Yr9 {11354}.    
  c: Pm8 is an orthologue of Pm3 and an allele of Pm8 in the rye genome {11354}. 
   GenBank KF572030.
Delete the final sentence of comments: ‘A STS marker…’.
Pm17.  v: Add: Embrapa 16 {11355}; Hugenoot {11355}; TXGH13622 {11355}.
  c: Pm17 shares 96% nucleotide identity with Pm8 (83% at the protein level) and low but
   significant identity with Pm3CS {11355}. GenBank MH0779.
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Pm21.  v: Yangmai 18 {11352}.
  ma: Genetic mapping in a ‘resistant × susceptible’ D. villosum cross identified two RGA 
   candidate loci (markers 6VS-09.4 and 6VS.09.4b) co-segregating with Pm21 and 
   overlapped by an EMS-induced, susceptible mutation {11352}.
  c: Add:  Marker 6VS-09.4 but not marker 6VS-09.4b was deleted in a susceptible 
   mutant indicating that the former was Pm21 – the protein product had a CC–NBS 
   –LRR structure – GenBank MF370199 {11353}. This gene was different from Stpk-V 
   {11275} but was quite similar to NLR-V1 {11353}.
Pm57. Correction: ‘…..2BL (T2BS·2BL-2SS#1)…’.
  ad: Add: BCS+2SS#1 TA3581 {11159}.
Pm62 {11321}.       Adult-plant reaction. Pm2VL {11321}. T2BS·2VL#5 {11321}.
  v: NAU1823 {11321}.
  ma: X2L4g9P4/Hae111 {11159}.    
Pm63 {11331}. Pm628024 {11331}.  2BL {11331}.
  bin: 2BL6-0.89-1.00.
  v: PI 628024 {11331}.    
  ma: Xwmc175-2B – 1.7 cM – Xstars419-2B – 0.6 cM – Pm63 – 1.1 cM – Xbcd135.2 – 2B;
   7103 – 7234 in the CS Reference Assembly {11331}.
Pm64 {11346}. PmWE35 {11346}.  2BL {11346}.
  bin: 2BL4-0.5-0.89.
  v: WE35 {11346}.      
  tv: T. turgidum subps. dicoccoides G-573-1 {11346}.
  ma: Xwmc175-2B – 1.12 cM – Pm64/Xgwm47-2B – 2.18 cM – Xwmc332-2B {11346}. 
   Complete repulsion linkage with Yr5 in 644 F3 lines {11346}.
Pm65 {11356}. PmXM208 {11356}.  2AL {11356}.
  v: Xinmai 208 {11356}.
  ma: Xhbg327-2A – 4.4 cM – XresPm4/XTaAetPR5 – 0.6 cM – PmXM208 – 1.6 cM – 
   Xbarc122-2A {11356}. An allelism test of Pm65 and Pm4a showed a recombination 
   value of 10.3 cM based on the frequency of susceptible F2 plants {11356}. 
Pm66 {11364}. 4BS (T4BL.4Sl#7S) {11364}.
  v: TA3465 {11364}. 
  al: Ae. longissima (unknown accession).     
  ma: 4SlS markers developed in {11364}.
  90.3. Temporarily designated gene for resistance to Blumeria graminis
Insert at the beginning of the Pm series:      
Pm10V-2 {11380}. 5DS {11380}.
  bin: 5DS-0-0.63.
  v: 10V-2 {11380}.
  ma: Xbwm25-5D/Xswgi066-5D – 1.2 cM – Pm10V-2/several markers – 1.2 cM – Xcfd-5D 
   {11380}.
The complex nature of temporarily named powdery mildew resistance genes in the Pm2 region is discussed in {11380}. 
        
Insert alphabetically:
PmTx45 {11374}.  Recessive.   4BL {11374}.
  bin: 4BL5-0.85-1.00.  v:  Tian Xuan 45 {11374}   
  ma: Ax-110673642 – 3.0 cM – PmTx45 – 2.6 cM – ILP4B01G266900 {11374}.

95. Reaction to Diuraphis noxia
Dn1.  Add note at end of section:
‘VIGS silencing of 5AL-B4 on chromosome 5A compromised resistance conferred by Dn1 suggesting a decoy role 
{11333}.’
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96. Reaction to Fusarium spp.
  96.1. Disease: Add: Fusarium head scab, scab
QFhs.ndsu-3A.  Add: This gene was transferred to durum cultivars using the closely linked marker Xgwm2-3A {11367}.

Luke (S) / AQ24788-83 (R): RIL population: QFhb.cau-7DL near marker Xgwm428-7DL was equally effective as Fhb1 
{11358}.

Under the heading ‘Tetraploid wheat’ add:
Ben*2 / Tunisian 108 BIL population: nine QTL for FHB resistance of which new QTL Qfhb.ndsu-2B and Qfhb.ndsu-
3BL and Qfhb.ndsu-5A and Qfhb.ndsu-7BL were the most important {11382}.

99. Reaction to Mayetiola destructor
Add at end of section:
Jagger (S) / 2174 9 (R): RIL population: QHf.osu-1A (Syn. Qhf.osu74 (R2 = 0.70) and QHf.osu-2A (R2 = 0.18) {11325}. 
The QTL in chromosome 1A appeared to be co-linear with several previously named H genes in tetraploid wheat; the 
gene in 2A was in repulsion with the 2N segment present in Jagger {11325}. 

Duster (R) / Billings: DH population: QHf.osu.1A.2 (Syn. QHf.osu-1Ad), R2 = 0.88, delimited to a 2.7 cM region flanked 
by GBS07851 and GBS10205 {11324}. This was a distinct locus 11.2 cM proximal to QHf.osu.1A.

Mayetiola-destructor susceptibility gene-1
Mds-1A [Mds-1] {11327}.  3AS {11327}.
  v: No allelic variation demonstrated. 
  c: EST CD453475, GenBank JN162442; Mds-1A encodes a 151 amino-acid protein 
   with 96% identity with HSP16.9 {11327}. Homoeologues are present in chromo-
   somes 3B and 3D. Silencing of Mds-1 expression caused immunity in otherwise 
   FHB-susceptible genotypes {11327}.

101. Reaction to Mycosphaerella graminicola (Fuckel) Schroeter, Zymoseptoria tritici
Stb19 {11360}.  1DS {11360}.  v:   Lorikeet {11360}.
  ma: KASP markers snp_4909967 and snp_1218021 {11360}.
The source of Stb19 was a synthetic wheat {11360}.     
Add at end of section: 
‘See {11332, 11361} for reviews.’. 

102. Reaction to Phaeosphaeria nodorum (E. Muller) Hedjaroude (anamorph: Stagonospora nodorum (Berk.) 
Castellani & E.G. Germano); Parastagonospora nodorum
  102.2 Sensitivity to SNB toxins (necrotrophic effectors)
Snn1. Synonym: TaWAK {11341}. 
  c: Snn1 encodes a wall-associated kinase (WAK) {11341}. GenBank: KP091701.
Snn1 was present in some T. turgidum subsp. dicoccum accessions, 73% of durum accessions and 16% of common wheat 
accessions {11341}.  
snn1.  s: CS/Hope 1B {11341}.

105. Reaction to Puccinia graminis Pers.
Sr26.  ma: Add: Four KASP markers were developed for the original translocation (FL 0.85).
   WA-1 (AUS91435) a derivative with a shortened 6Ae#1 segment (FL 0.32), ampli-
   fied only sunKASP_224 and sunKASP_225 {11336}. The latter was diagnostic for 
   accession AGG91586WHEA SrB, a derivative of line WA-5 (AUS91436) {11338}. 
   PCR markers based on NLR genes in homoeologous group 6 chromosomes were used 
   to confirm that WA-2 Type 1 was the smallest secondary translocation carrying Sr26 
   {11357}.   
Sr60.  c: Cloning of Sr60 from T. monococcum PI 306540 revealed a protein with two putative 
   kinase domains designated Wheat Tandem Kinase 2 (WTK2) {11386}.
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SrB {11337}. 6A = T6AS.6AL-6Ae#1-6Ae#3 {19018}.
  v: AGG91586WHEA Sr26 {19018}.   
  ma: SrB was recombined with a 6Ae#1 segment possessing Sr26. Marker sunKASP_225 
   {11336} was diagnostic for the recombined line AGG91586WHEA {11338}.
 6Ae#3 {11338}.    su:  W3757 {11337}, a (6Ae#3(6D) line {11338}.
Complex genotypes:
Add:
PI 362698: Sr5, Sr8a, Sr12, Sr15?, Sr16 {11347}.
 
106. Reaction to Puccinia striiformis Westend.
   106.1. Designated genes for resistance to stripe rust 
YR5. Add to introductory sentence: ‘, but cloning indicated that Yr7 is not allelic with Yr5 and YrSP {11351}.
   Yr5a [{11397}]. Yr5. 
  c: Yr5 (GenBank MN275771) along with Yr7 and YrSP has a BED–LRR structure lack-
   ing a CC-domain {11351}.
   Yr5b [{11397}]. See YrSP, YrSp
  c: (GenBank MN273772) along with Yr5 and Yr7 has a BED–LRR structure lacking a
   CC-domain {11351}. YrSp is a truncated form of Yr5 but confers a different specific-
   ity {11351}.  
Yr7. Add to the introductory sentence: ‘, but cloning indicated that Yr7 is not allelic with Yr5 and YrSP {11351}.  
  v: Paragon {11351}.
  c: Yr7 (GenBank MN273773) along with Yr5 and YrSP has a BED–LRR structure lack-
   ing a CC-domain {11351}.    
Yr15.  v: Add:  Clearwhite 515 {11392} Expresso {11392}; Patwin 515 {11392}; Seahawk 
   {11392}.
  ma: Xbarc-8-1B – 4.2 cM – Yr15 – 3.5 cM – Xgwm413-1B {11348}; Xbarc8-1B – 4.1 cM 
   – Yr15 – 2.5 cM – Xuhw-1B – 0.5 cM – Xgwm413-1B {11348}. Yr15 is proximal to 
   Yr64; recombinant lines are reported in {11349}; Xwhu300-1B – 0.013 cM – 
   Xwhu273-1B {11392}.
  c: Encodes a putative kinase-pseudokinase protein designated as wheat tandom kinase 1 
   (TPK1), g-DNA 4,655 bp, 665 amino acids. GenBank MG649384, MG674157 
   {11392}.
Yr17.  v: Add a reference following Jagger, i.e. ‘Jagger {10973, 19008}’.
Add note at end of Yr17 section: ‘Mundt {11340} noted that many genotypes containing Yr17 continued to have adult-
plant resistance to races virulent on the seedlings. These cultivars included Renan, Apache, Jagger, Bobtail, and Madsen. 
However, it was unclear as to whether this represented additional resistance gene(s) in the introduced segment or APR 
genes at other loci.’.
Yr24.  Replace the final reference 939 in ‘{10339, 939}’ with ‘{10339, 11391}’.
Yr26.  ma: Add: Xgwm11-1B – 0.9 cM – Yr26 – 6.3 cM – Xbarc181 {11350}. Located between 
   KASP markers WRS435 and WRS312 in an interval of 0.4 cM {11350}.
 Replace the final references ‘{10339, 939}’ with ‘{10339,11391}’.
Yr29.  ma: QYr.ucw-1BL was mapped to a 0.24 cM region (332 kb IWGSC RefSeq v1.0 between 
   ucw.k31 and csLV46G22 {11386}.
Yr64.  ma: Yr64 is distal to Yr15; recombinant lines are reported in {11349}.
Yr82 {11322}. bin: 3BL7-0.63-1.00.
  v2: AUS27969 = JI 1190592 Yr29 {11322}.
  ma: KASP_13376/sunKASP_301 – 0.4 cM – sunKASP_300 – 2.0 cM – Yr82 – 2.0 cM – 
   KASP_8775 {11322}.
   106.2. Temporarily designated genes for resistance to stripe rust 
   YrM866-4 {11381}. 4AL {11381}. bin:  4AL13-0.59-0.66.
  v:   M8664-3 {11381}.   
  ma:   Xgpw2331-4A – 2.8 cM – Yr8664-3 – 8.1 cM – Xgpw3224-4A {11381}.
  106.3. Stripe rust QTL
Avocet S / PI182103 RIL population: QTL detected on chromosomes 2AS and 3AL for seedling resistance and 4DL, 
5BS, and 7BL for APR; QyrPI182103.wgp-4DL was designated as Yr79 {11222}.
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Avocet S (S) / Qinnong 142 (R): RIL population: Adult-plant resistance: QYrqin.nwafu-1BL – AX-95133868 – AX-
94522424, R2 = 0.16–0.20, likely Yr29; QYrqin.nwafu-2AL, AX-94655393 – AX-9489521, R2 = 0.08–0.20; QYrqin.
nwafu-2BL, AX-94507002 – AX-94562871, R2 = 0.18–0.39; QYrqin.nwafu-6BS R2 = 0.14–0.31 {11377}.
Seedling resistance in Qinnong 142 to race CYR23 was attributed to genes on chromosomes 1DS and 4AL {11377}.

Jagger (MR) / 2174 (MS): After {10973}. Add: According to {11356} Qyr.osu-5A is an orthologue of OsXA21 and con-
fers resistance to multiple pathogens/pests.

Luke (MR) / AQ24788-83 (APR): RIL population: QYr.cau-2AL near IWB4475 (R2 = 23–40%) from AQ24788-83 and 
Yr18 (R2 = 11.0–14.7%) from Luke (11366).

Mingxian 169 (S) / Chakwal 86 (R): RIL population: QTL on chromosomes 1BL (Yr29), 3BS (not Yr30), and 6BS 
(QYrcw.nwafu-6BS) contributed to the high level of APR in Chakwal 86 {11371}.

Mingxian (S) / P9936 (R): RIL population: QYr.nwafu-3BS (probably Yr30) and QYr.nwafu-7BL flanked by AX-
108819274 and AX-11040708 (R2 = 36.0–38.9%; a KASP marker was developed for the latter {11373}. 

Mingxian 169 (S) / Qing Shumai (R): RIL population: APR QTL QYr.cau.6DL, Xbarc1121-6D – Xgpw4005-6D region: 
positive interaction with Yr18 {11323}.

Mingxian 169 (S) / Centrum (R): RIL population: QTL detected on chromosomes 7BL (QYrcen.nwafu-7BL, R2 = 23.4%, 
AX-94556751 – AX-110366788), 1AL (QYrcen.nwafu-1AL (R2 = 11.2%, AX-94488258 – AX-94458040), and 4AL (QYr-
cen.nwafu-4BL, R2 = 12.6%, AX-94695204 – AX94996273 {11365}.

Mingxian 169 (S) / Toni (R): RIL population: QYrto.swust-3AS, AX-95240 – AX-9482889091, R2 = 0.22–0.56: QYrto.
swust-3BS, AX-994509749 – AX-94998050, R2 = 0.23–0.55 {11379}.

Soru#1 (R) / Naxos (MR): RIL population: Seedling and field tests detected two moderately effective QTL that were 
likely Yr24 and Yr28 derived from Soru#1 {11368}. A KASP marker was developed for Yr28. 

Thatcher (S) / Hong Qimai (APR) RIL population: QYr.cau-2AL near Xgwm311-2A and IWB4475 (R2 = 47–52%), Qyr.
cau-4AL (R2 = 5–7%) and Qyr.cau-7AL (R2 = 9–10%) derived from Hong Mai {11366}.

107. Reaction to Puccinia triticina
   107.1. Genes for resistance
Lr17.   
   Lr17a. v2: Jagger Lr37 {11328}.
At the end of section add the following to the list of complex genotypes:
Duster: Lr34 Lr46 Lr77 {11369}.

LrSV2.  Add note:
‘According to {11334} LrSV2 acted in a complementary way with Lrc-SV2 on chromosome 4BL. These complementary 
genes were closely linked to the locations of Lr27 and Lr31 but were considered to be different genes.’.

109. Reaction to Pyrenophora tritici-repentis
   109.1. Resistance to tan spot
Tsr7 {11363}. Dominant. QTs.zhl-3B {11362}.
  3BL {11362, 11363}. v: Br34 {11363}; Penawawa {11363}.
  sutv: LDN (T. dic. IsraelA 3B} {11363}.
  ma: Linked STARP markers were developed {11363}.
Tsr7 conferred resistance to race 1 (isolate Pti2), race 2 (isolate 86-124), race 3 (isolate 331-9), and race 5 (isolate DW5) 
{11362}.

QTL
Louise / Penawawa RIL population: QTs.zhl-1A, located at interval 0–6.0 cM and likely Tsc1; QTs.zhl-2D, located at 
144.0–152.0 cM; QTs.zhl-3B, located at 72.0–78.0; and QTs.zhl-5A located at 154–160 cM {11362}. 



105

A n n u a l  W h e a t  N e w s l e t t e r            V o l.  6 5.
112. Reaction to Schizaphis graminum
Gb8 {11378}. Gb595379-1 {11378}.  7DL {11378}.
  bin: 7DL3-0.81-1.00. v: PI 595379-1 {11378}.
  ma:   Xbarc11-7D – 10.41 cM – Gb8 – 7.4 cM – Xwmc824-7D – 4.8 cM – Xgwm428-7D 
   {11378}. Gb3 – Gb8 15 cM {11378}. 
 
119. Reaction to Wheat Streak Mosaic Virus
Wsm2. v: Add: Clara CL PI 1665948 {11329}; Oakley CL PI 670190 {11329}.
  ma: Eight SNP markers were mapped within 1 cM of Wsm2 {11329}. KASP markers were
   developed from some of these SNP {11330}.

122. Reaction to Wheat Yellow Mosaic Virus
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