ࡱ> #` bjbj5G5G BW-W-u#Pt8*8*8*8p*4*t `;<++"+++,,,7:9:9:9:9:9:9:$<h?]:,,,,,]:++;333,l++7:3,7:333++ 4MG8*1d34$0;0`;3?1?3?38,,3,,,,,]:]:32,,,`;,,,,t t t 8*t t t 8* Dominance and recessiveness of parameters of Aluminum-resistance of barley F2 hybrids at different concentrations of stress factor E. M. Lisitsyn and I. I. Lisitsyna North-East Agricultural Research Institute, 166-0 Lenin street, Kirov, 610007, Russia e-mail: edaphic@mail.ru Till now there is no uniform opinion in the scientific literature about number and type of action of genes coding barley aluminum resistance. For example, Rigin, Yakovleva (2001) considers, that it is controlled by two oligogenes, as a minimum, with possible action of genes with weaker effect. Other authors assume the control of the parameter by one dominant gene Pht [Stolen, Andersen, 1978], or gene Alp [Reid, 1971], both located on chromosome 4 [Minella, Sorrells, 1997]. Gourley et al [1990] concluded, that type of action of genes coding aluminum resistance in sorghum (additive, partially or completely dominant), depends not only on a researched genotype, but also on used Al concentration. Aniol [1995, 1996] has established, that when the concentration of aluminum in test solution is low (30-40 ), cereal cultures (wheat, rye) use mechanisms that block accumulation of aluminum in roots (for example, chelation of aluminum at the expense of exudation of organic acids by root system), at higher concentration of aluminum in root growth environment (200-300 ) the basic role is played by other physiological mechanisms of Al-resistance. Thus the author remarks [Aniol, 1997] that the aluminum resistance of wheat plants at a concentration of 296  is controlled by 2 genes and at a concentration of 592  aluminum resistance is controlled by three genes. He wrote, that genes located in D-genome of wheat, are expressed only at high Al concentration, and genes located on chromosome 5 are expressed at all studied concentrations. The aim of our research was to determine the influence of Al concentration on a direction and character of dominance of parameters of roots growth of barley F2 hybrid seedlings. Material and Methods The direct and reciprocal F2 hybrids of four selection numbers of barley (!! 565-98, 889-93, 999-93 and 1030-93), bred in North-East Agricultural Research Institute (Kirov, Russia) were taken for the analysis. By results of the preliminary laboratory analyses the parental forms of these hybrids differed significantly on a level of Al-resistance that corresponded to the research aim. A level of Al-resistance (relative root length - RRL) was estimated under conditions of rolled culture on five-day barley seedlings according to the technique described earlier [Lisitsyn, 2000] by division of value of root length of each individual seedling in test treatment variant (0.5 and 1.0 mM of aluminum as sulphate salt, @ 4.3) on value of average root length of control variant (without the stress factor, @ 6.0). Each sample volume consists of 99-105 seedlings in each treatment variant. Character of dominance for parameters of root growth of F2 hybrid plants was estimated by equation [Petr, Frey, 1966]: d = F2 - MP HP-MP , where d = degree of dominance; F2,  ,   = means of F2 hybrids, resistant parent value, and mid parent value, respectively. Results and Discussion Expression of Al-resistance genes appreciably depend on a concentration of aluminum in test solution and with its increase the resistance of all hybrids was reduced without exception (table 1). Table 1. Parameters of root growth of barley F2 hybrids under laboratory condition HybridRoot length, mmRRL, %0 mM Al0.5 mM Al1.0 mM Al0.5 mM1.0 mM565-98 x 889-93109.21.571.21.256.31.065.20.651.60.5889-93 x 565-93103.01.184.71.371.31.282.30.769.20.7565-98 x 999-93113.61.671.81.848.31.263.20.942.60.6999-93 x 565-98103.32.265.80.955.31.263.70.553.50.7565-98 x 1030-93112.71.174.21.157.01.365.80.650.60.71030-93 x 565-98110.81.479.31.365.21.071.60.758.80.5889-93 x 999-93107.72.276.01.761.01.570.50.756.60.8999-93 x 889-93106.91.170.71.558.20.866.10.854.50.4889-93 x 1030-93107.61.475.02.064.51.569.71.159.90.81030-93 x 889-93102.11.679.01.062.90.877.40.661.60.5999-93 x 1030-93104.91.675.61.652.21.772.00.949.80.91030-93 x 999-93111.21.277.41.059.61.269.50.553.60.6 As it is visible from data, submitted in table 2, depending on the cross and aluminum concentration used, for some hybrids the large value of root length was dominated, for others hybrids the smaller value, but for the third part of hybrids dominance of root length was absent practically. It is possible to note the same character of dominance for RRL parameter. The similar phenomenon was earlier marked in the literature for other cereals. So, [Camargo, 1981, 1984] pointed out, that Al-resistance of wheat F2 population was coded by dominant genes at concentration of aluminum 3 mg/l, but became recessive at increase of concentration of the stressful factor up to 10 mg/l. Similar results were described in the researches with wheat [Bona et al., 1994]. Table 2. Influence of direction of crossing on character of dominance of parameters of root growth of barley F2 hybrids HybridDegree of dominance of a parameterRoot lengthRRL0 mM Al0.5 mM Al1.0 mM Al0.5 mM1.0 mM565-98 x 889-930.33-0.78-1.94-1.21-5.35889-93 x 565-93-0.940.341.260.995.00565-98 x 999-931.19-1.42-1.51-4.65-3.13999-93 x 565-98-0.44-2.12-0.70-4.50-0.85565-98 x 1030-93-0.81-0.45-0.51-0.37-0.401030-93 x 565-98-2.00-0.050.440.110.13889-93 x 999-934.331.181.10-0.160.23999-93 x 889-933.80-0.380.40-1.16-0.47889-93 x 1030-93-0.2510.141.981.671.151030-93 x 889-93-1.1115.961.583.471.40999-93 x 1030-93-0.351.05-4.000.590.171030-93 x 999-930.441.497.000.301.22 As it is follows from data, submitted in table 2, depending on a concrete combination of crossing domination of root length under control conditions, under both Al treatments and of RRL parameter can have positive or negative meanings, changing from negative super-domination till positive super-domination. Character and direction of domination can coincide for parameters of roots length under control conditions and under aluminum treatment, but sometimes can have an opposite direction. Directions of crossing caused opposite character of dominance of researched parameters of Al-resistance for hybrids 565-98 E 889-93 and 889-93 E 565-98. This tendency is some less expressed at hybrids received from crossing of breeding numbers 565-98 and 1030-93. At the same time direct and reciprocal hybrids between breeding n^j  L N  q J`tɺɮ}}k_hh@CJaJmH sH "hBMB*CJ\aJmH phsH hBMB*CJaJmH phsH hBM6CJaJmH sH h}mCJaJmH sH hBMCJaJhBMCJaJmH sH h+A5CJ\aJmH sH hBM5CJ\aJmH sH hh@hBM5H*\mH sH hh@5\mH sH hh@hBM5\mH sH %  N   :<fZ\J$1$a$$1$a$ $ a$gdh@$ J`Ja$gdh@$)`)a$$9`9a$$`a$$a$$a$gdh@X&@bf  Ptv .":<LNTVfZ\$DJRVԷ莁hy6CJaJmH sH h}m6CJaJmH sH hBMB*CJaJmH phsH hh@hBM5CJaJhh@hBM5CJaJmH sH hBMCJH*aJmH sH hh@CJaJmH sH hBMCJaJhBMCJaJmH sH h}mCJaJmH sH -Vfhl"4H`blt񿯿sggsg[g[[ghPWCJaJmH sH hyCJaJmH sH hBMCJH*aJmH sH h}mCJaJmH sH hBM6CJ]aJmH sH hBMCJaJmH sH hBMCJaJhyhy6CJaJmH sH hy6CJaJmH sH "hyhy6>*CJaJmH sH %hyh}m6>*CJH*aJmH sH hy6>*CJaJmH sH  012lf$Ifekd$$If4F. $. ~ $    44 lalf4 $$G$Ifa$$)`)a$$J`Ja$$a$gdh@$g`ga$ 02ab!! "@"##$$8%9%B%l%n%~%%%%%%%%%%%%%%%%%%&&1&B&`&r&&&&&&&'''B'T'o''¾¾¾hyCJaJmH sH hBMhBMCJaJhBMCJH*aJmH sH hh@CJaJmH sH hBMCJaJmH sH hh@hBM5CJaJmH sH FXP$G$Ifkd$$If4ֈ. $~ T$44 lalf4 $$G$Ifa$  *3<EYQ$G$Ifkd$$Ifhֈ. $. T$44 lal $$G$Ifa$ ENO_ir{YQ$G$Ifkd$$Ifhֈ. $. T$44 lal $$G$Ifa$d\QQQQQ $$G$Ifa$$G$Ifkdh$$Ifhֈ. $. T$44 lal d\QQQQQ $$G$Ifa$$G$IfkdG$$Ifhֈ. $. T$44 lal  ( 1 : C L d\QQQQQ $$G$Ifa$$G$Ifkd&$$Ifhֈ. $. T$44 lalL M ] g p y d\QQQQQ $$G$Ifa$$G$Ifkd$$Ifhֈ. $. T$44 lal d\QQQQQ $$G$Ifa$$G$Ifkd$$Ifhֈ. $. T$44 lal ! !d\QQQQQ $$G$Ifa$$G$Ifkd$$Ifhֈ. $. T$44 lal ! !!&!/!8!A!J!d\QQQQQ $$G$Ifa$$G$Ifkd$$Ifhֈ. $. T$44 lalJ!K!\!f!o!x!!!d\QQQQQ $$G$Ifa$$G$Ifkd $$Ifhֈ. $. T$44 lal!!!!!!!!d\QQQQQ $$G$Ifa$$G$Ifkd` $$Ifhֈ. $. T$44 lal!!!!!$$B%d[RRR[E $^`a$$)`)a$$`a$kd? $$Ifhֈ. $. T$44 lalB%I%l%m%n%z%~%$IfRkd $$If40. $. b$44 lalf4 $$G$Ifa$~%%%%%%%% $$G$Ifa$$Ifekd $$If4F. $b $    44 lalf4%%%%%%%%c[PPPPP $$G$Ifa$$G$Ifkdt $$If4ֈ. J$ TFF$44 lalf4%%%%%%%&d\QQQQQ $$G$Ifa$$G$IfkdZ$$Ifhֈ. J$. TFF$44 lal&&&&&%&+&1&d\QQQQQ $$G$Ifa$$G$Ifkd+$$Ifhֈ. J$. TFF$44 lal1&2&B&H&N&T&Z&`&d\QQQQQ $$G$Ifa$$G$Ifkd$$Ifhֈ. J$. TFF$44 lal`&a&r&x&~&&&&d\QQQQQ $$G$Ifa$$G$Ifkd$$Ifhֈ. J$. TFF$44 lal&&&&&&&&d\QQQQQ $$G$Ifa$$G$Ifkd$$Ifhֈ. J$. TFF$44 lal&&&&&&&&d\QQQQQ $$G$Ifa$$G$Ifkdo$$Ifhֈ. J$. TFF$44 lal&&&&' '''d\QQQQQ $$G$Ifa$$G$Ifkd@$$Ifhֈ. J$. TFF$44 lal''''-'3'8'='B'd\QQQQQ $$G$Ifa$$G$Ifkd$$Ifhֈ. J$. TFF$44 lalB'C'T'Z'`'e'j'o'd\QQQQQ $$G$Ifa$$G$Ifkd$$Ifhֈ. J$. TFF$44 lalo'p'''''''d\QQQQQ $$G$Ifa$$G$Ifkd$$Ifhֈ. J$. TFF$44 lal''''))b*d***,ttt/u8u9u;uuuzzzzz"z#z$z%z&z.zSzXzz{ҹtdhBMB*CJaJmH phsH %hBM6B*CJ\aJmH phsH  hh@hBMB*CJ\aJph"hBMB*CJ\aJmH phsH hBM6B*CJ]aJphhBMB*CJaJphhh@5CJaJmH sH hh@hBM5CJaJUhh@CJaJmH sH hBMCJaJmH sH hBMCJaJ"''''''''d\QQQQQ $$G$Ifa$$G$Ifkd$$Ifhֈ. J$. TFF$44 lal''''))ttdWNEEEN$9`9a$$`a$ $H^H`a$kdU$$Ifhֈ. J$. TFF$44 lalumber 565-98 and breeding number 999-93 for main part of researched parameters have shown only different degree of dominance, but not its different direction. Direct and reciprocal hybrids between selection numbers 889-93 and 1030-93 had least differences on a direction and character of dominance. References: Aniol A.M. 1995. Physiological aspects of aluminum tolerance associated with the long arm of chromosome 2D of the wheat (Triticum aestivum L.) genome. Theor Appl Genet. 91: 510-516 Aniol A. 1996. Aluminum uptake by roots of rye seedlings of differing tolerance to aluminum toxicity. Euphytica 92: 155-162. Aniol A. 1997. the aluminum tolerance in wheat. plant Breeding: Theories, achievements and problems. Proc. Int. Conf., Dotnuva - Akademija, Lithuania: 14-22 838= .., /:>2;520 .. 2001. 5=5B8G5A:85 0A?5:BK B>;5@0=B=>AB8 OG<5=O : B>:A8G=K< 8>=0< 0;N<8=8O [Genetic aspects of barley tolerance against toxic Al ions] 5=5B8G5A:85 @5AC@AK :C;LBC@=KE @0AB5=89. 564. =0CG.-?@0:B. :>=D., 13-16 =>O1@O, !-1: 397 [In Russian] Minella E., Sorrells M.E. 1997. Inheritance and chromosom locationof Alp. A gene controlling aluminum tolerance in 'Dayton' barley. Plant Breeding, V.116: 465-469 Reid D.A. 1971. Genetic control of reaction to aluminum in winter barley. Barley Genetics II Proc. 2nd Int. Barley Genetics Symp., Pullman, Wash.: 409-413 Stolen O., Andersen S. 1978. Inheritance of tolerance to low soil pH in barley. Hereditas, V.88. 101-105 Gourley L.M., Rogers S.A., Ruiz-Gomez C., Clark R.B. 1990. Genetic aspects of aluminum tolerance in sorghum. Plant Soil, V.123: 211-216. Petr F.C., Frey K.J. 1966. Genotype correlations, dominance and heritability of quantitative characters in oats. Crop Sci., V.6. 259-262 Bona L., Carver B.F., Wright R.J., Baligar V.C. 1994. Aluminum tolerance of segregating wheat populations in acidic soil and nutrient solutions. Communic. Soil Sci. Plant Anal., V.25. 327-339 Camargo C.E.O. 1981. Wheat improvement. 1. The heritability of tolert.u/u;uumv wzzN{{C||}2ބQRSXZ[]  ^ `$P^`Pa$gdh@ P^`Pgdh@ u^`u$`a${{{{A||}}QSXY[\^_abdֶthv0JmHnHuhh@ hh@0Jjhh@0JUhBMhh@hh@mH sH hh@mH sH hvjhvUhBMCJaJmH sH U"hBMB*CJ\aJmH phsH hBMCJaJhBMB*CJaJmH phsH "hBMB*CJH*aJmH phsH &ance to aluminum toxicity. Bragantia, V.40. 33-45 Camargo C.E.O. 1984. Wheat improvement. IV. Heritability studies on aluminum tolerance using three concentrations of aluminum in nutrient solutions. Bragantia, V.44. 49-64 Lisitsyn E. M. 2000. Intravarietal Level of Aluminum Resistance in Cereal Crops. J Plant Nutrit., V.23(6): 793-804     Barley Genetics Newsletter 37:1-4 (2007) PAGE  PAGE 1 ]^`acd &`#$gdBM$a$gdh@@0&P1hP:ph@;0/ =!"#$% $$If!vh5. 55~ #v. #v#v~ :V 4$+,5. 55~ / / / / alf4$$If!vh5. 55T555#v. #v#vT#v#v#v:V 4$+,5~ 55T555/ / / / alf4$$If!vh5. 55T555#v. #v#vT#v#v#v:V h$,5. 55T555/ / / al$$If!vh5. 55T555#v. #v#vT#v#v#v:V h$,5. 55T555/  / / al$$If!vh5. 55T555#v. #v#vT#v#v#v:V h$,5. 55T555/ / / al$$If!vh5. 55T555#v. #v#vT#v#v#v:V h$,5. 55T555/  / / al$$If!vh5. 55T555#v. #v#vT#v#v#v:V h$,5. 55T555/ / / al$$If!vh5. 55T555#v. #v#vT#v#v#v:V h$,5. 55T555/  / / al$$If!vh5. 55T555#v. #v#vT#v#v#v:V h$,5. 55T555/ / / al$$If!vh5. 55T555#v. #v#vT#v#v#v:V h$,5. 55T555/  / / al$$If!vh5. 55T555#v. #v#vT#v#v#v:V h$,5. 55T555/ / / al$$If!vh5. 55T555#v. #v#vT#v#v#v:V h$,5. 55T555/  / / al$$If!vh5. 55T555#v. #v#vT#v#v#v:V h$,5. 55T555/ / / al$$If!vh5. 55T555#v. #v#vT#v#v#v:V h$,5. 55T555/ / / al$$If!vh5. 5b#v. #vb:V 4$+,5. 5b/ / / / alf4$$If!vh5. 55 #v. #v#v :V 4$+,5b55 / / / / alf4$$If!vh5. 555T5F5F#v. #v#v#vT#vF:V 4$+,5 555T5F/ / / / alf4$$If!vh5. 555T5F5F#v. #v#v#vT#vF:V h$,5. 555T5F/ / / al$$If!vh5. 555T5F5F#v. #v#v#vT#vF:V h$,5. 555T5F/  / / al$$If!vh5. 555T5F5F#v. #v#v#vT#vF:V h$,5. 555T5F/ / / al$$If!vh5. 555T5F5F#v. #v#v#vT#vF:V h$,5. 555T5F/  / / al$$If!vh5. 555T5F5F#v. #v#v#vT#vF:V h$,5. 555T5F/ / / al$$If!vh5. 555T5F5F#v. #v#v#vT#vF:V h$,5. 555T5F/  / / al$$If!vh5. 555T5F5F#v. #v#v#vT#vF:V h$,5. 555T5F/ / / al$$If!vh5. 555T5F5F#v. #v#v#vT#vF:V h$,5. 555T5F/  / / al$$If!vh5. 555T5F5F#v. #v#v#vT#vF:V h$,5. 555T5F/ / / al$$If!vh5. 555T5F5F#v. #v#v#vT#vF:V h$,5. 555T5F/  / / al$$If!vh5. 555T5F5F#v. #v#v#vT#vF:V h$,5. 555T5F/ / / al$$If!vh5. 555T5F5F#v. #v#v#vT#vF:V h$,5. 555T5F/ / / ald@d Normal$*$1$A$a$+B*CJOJPJQJ^J_HaJmHsHtHDA@D Default Paragraph FontVi@V  Table Normal :V 44 la (k(No List JOJ Absatz-StandardschriftartPOP WW-Absatz-StandardschriftartROR WW-Absatz-Standardschriftart1TO!T WW-Absatz-Standardschriftart11VO1V WW-Absatz-Standardschriftart111BOAB A=>2=>9 H@8DB 0170F0RObR 03>;>2>: x$CJOJPJQJ^JaJ6B@b6 Body Text x(/@ar( List^JJOJ 0720=85 xx $6CJ]^JaJ6O6 #:070B5;L $^J4@4 Header  E$BOB 1KG=K9 (251) CJ4 @4 h@Footer  !.)@. h@ Page Number# #-.p q   #####$$$$$$$$ $$$$$ $$$$$$$$$-.p q    s t u  $.7@IRScmv!+4=FOPakt} )2;DMN_ir{    ,27<AFGW\bhntu &+,<AGLRXYjpv{    qr~3M[ !!O""n#o#p#u#x#{#~##########000000000000000000000000000000 00000000 0 0 0 0 0 00 0 0 0 0 0 00 0 0 0 0 0 00 0 0 0 0 0 00 0 0 0 0 0 00 0 0 0 0 0 0d0 0 0 0 0 0 00 0 0 0 0 0 00 0 0 0 0 0 00 0 0 0 0 0 00 0 0 0 0 0 00 0 0 0 0 0 00000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00000000000000000000000000000@0@00\00@0@00  7BOOORV'{7@E L !J!!!B%~%%%&1&`&&&&'B'o'''t] !"#$%&'()*+,-./012345689?C7>BIKR!!8@0(  B S  ?CDLM HI, 4   > @ B D   ,FWt+<Xj tur{~ RS[bgouy| ! ! @ B D E L M O Q f g m n s u x y | } STYZ]^fgtuy{~t#u#w#x#######h@+APW}myvBM  $.7@IRScmv!+4=FOPakt} )2;DMN_ir{  ,27<AFGW\bhntu &+,<AGLRXYjpv{  #@d/CCCCCC C C CCMM"#@,@<@*@x@@UnknownGz Times New Roman5Symbol3& z ArialO& k9?Lucida Sans Unicode5& zaTahomaBh&&Q J+@J+@!4dc#c#2HP?h@2?><8=0=B=>ABL 8 @5F5AA82=>ABL ?@87=0:0 0;N<>CAB>9G82>AB8 381@84Lito"!Victoria BlakeOh+'04H$0@L` x    |Доминантность и рецессивность признака алюмоустойчивости гибридLito™ Normal.dotVictoria Blake2Microsoft Office Word@F#@pSc>@yEG@yEGJ+G8FVT$m*  #    .@Times New Roman- :2  Barley Genetics Newsletter 37:1 &*** 2  -2  4 (2007) 2   ' 2   ' 2 @ ,  'N   2 @  N 1 2 @  N N  ''@Times New Roman- R2 b1/ Dominance and recessiveness of parameters of Al*0   0*2 b uminum 0 1 2 b -+2 b resistance of barley   '@Times New Roman--- 2 i F$- 2  2-[2 5 hybrids at different concentrations of stress factor      2   '@Times New Roman- 2 ,  '>2 " E. M. Lisitsyn and I. I. Lisitsyna! / !    ! 2 T  '@Times New Roman-2 R Northm$ 2 R -I2 R)) East Agricultural Research Institute, 166 #   !    2 RX -Ri@Times New Roman-. 2 Ri .-A2 R$ Lenin street, Kirov, 610007, Russia   $   !  2 RR  ' 2  e 2  - 2 * m%)2 O ail: edaphic@mail.ru   .&  2   ' 2   '2 [ Till now there is no uniform opinion in the scientific literature about number and type of o  $  %      & '2 8, ac72 8X tion of genes coding barley a:    2 8 l 2 8 uminum )' &U2 81 resistance. For example, Rigin, Yakovleva (2001) c  %  "   $   '\2 r,6 considers, that it is controlled by two oligogenes, as     $ J2 r[* a minimum, with possible action of genes & && %      '@Times New Roman--2 ,[ with weaker effect. Other authors assume the control of the parameter by one dominant gene o%  %  $  &     &   &  -2  Phtn- 2   '- 2 , [,2 = Stolen, Andersen, 1978  $ 2   ], or gene  -2  Alpn-2 D [2 h  Reid, 1971!  =2 J! ], both located on chromosome 4 [s  %&2 !  Minella, 1-    ' 2 , Sorrells, 1997  2 D ]. n 2 o  ' 2 X  '2   Gourley e$ 2 jR t al [1990] concluded, that type of action of genes coding aluminum resistance in                & &    '2 ,[ sorghum (additive, partially or completely dominant), depends not only on a researched geno%     %  &    2  - '2 ,R type, but also on used Al concentration. Aniol [1995, 1996] has established, that   $   $     2    when the $  '[2 >,5 concentration of aluminum in test solution is low (30s  ' %     % 2 >{ -2 > 40 >@Times New Roman-. 2 > ,.-2 > ), cerea 52 > l cultures (wheat, rye) use  $  '2 w,  mechanisms & &2 w1  that block v2 wG accumulation of aluminum in roots (for example, chelation of aluminum &   ' ' &     ' ' '2 ,Y at the expense of exudation of organic acids by root system), at higher concentration of    %     '22 , aluminum in root growth en ' % #2   vironment ( &2  200c 2  -2  300 r@Times New Roman-. 2  ,.-A2 $ ) the basic role is played by other        '(2 $, physiological mecha    &2 $  nisms of Al &$ 2 $ -2 $ resisr .2 $B tance. Thus the author  :2 $; remarks [Aniol, 1997] that the %$    '2 ],  aluminum  ' &2 ]  resistance of %2 ] wheat plants at u% 2 ]R a 2 ]w  concentrae2 ]8  tion of 296  ]C@Times New Roman-. 2 ]C ,.- 2 ]o  2 ]~ 72 ] is controlled by 2 genes and e   '2 , at i(2 b a concentration of  2  592 r]@Times New Roman-. 2 ] ,.- 2  =2 ! aluminum resistance is controllede ' &   ;2 J  by three genes. He wrote, that  $$   '&2 , genes located in D  $ 2  -w2 H genome of wheat, are expressed only at high Al concentration, and genes %%   $     '.2 , located on chromosome 5   %&  /@Times New Roman-. 2 / #.-#2 R are expressed   52  at all studied concentration      2  s 2  . 2   ' 2 C  '+2 } The aim of our resear &2 }X ch was$%2 } to determine thes& P2 }>. influence of Al concentration on a direction  $     '@Times New Roman---q2 ,D and character of dominance of parameters of roots growth of barley F   &   &   #    - 2  2-2  hybrida 2 ;  seedlings.   2   ' 2   '-2 *, Material0 2 * 2 * ande 2 *C 2 *P Methodsl0 2 *   '-42 c The direct and reciprocal F   - 2 i 2-c@Times New Roman-.U2 c1 hybrids of four selection numbers of barley (   & 00.-2 c/ 565h 2 cz -2 c 98,   '2 , 889  2 w -2  93, 999l  2   -2 1  93 and 1030 2 ) -&2 : 93), bred in North  $ 2  -[2 5 East Agricultural Research Institute (Kirov, Russia)  #   "  $  !   '2 ,b were taken for the analysis. By results of the preliminary laboratory analyses the parental forms $  "  '   & '\2  ,6 of these hybrids differed significantly on a level of         2   Al $ 2   -A2  $ resistance that corresponded to the    '52 H , research aim. A level of Al % #  $ 2 H  -=2 H ! resistance (relative root length h     2 H ^ -22 H o RRL) was estimated under !!$ &  'A2 ,$ conditions of rolled culture on five      2  -b2 : day barley seedlings according to the technique described        ';2 ,  earlier [Lisitsyn, 2000] by divi     m2 A sion of value of root length of each individual seedling in test            ' ,@Times New Roman-.2 ,a treatment variant (0.5 and 1.0 mM of aluminum as sulphate salt, 4.3) on value of average root %        &,   & &      $         .- '. ,@Times New Roman-.2 . ,] length of control variant (without the stress factor, 6.0). Each sample volume consists of   %  $  %  & .-2 . w 99  2 .  - 'G2 h ,( 105 seedlings in each treatment variant.     %   2 h G  ' 2   '-a2 9 Character of dominance for parameters of root growth of F !  &  %   $  - 2 ? 2-;2 P  hybrid plants was estimated by     $  &  '2  ,  equation [  #2   Petr, Frey, 1966  2  7 ]: 2  V  '@Times New Roman---2 N H d =  " 2 N  @Times New Roman-@Times New Roman- -2 N  F - @ !vS -  - 2 T + 2- @ !X +-  - 2 N < 2 N I -2 N Y  MP * - @ !S <-  2 N  2 {  HP $ 2 " -2 3 MP* 2 { "System p -                            ՜.+,0` hp|  B @c# zДоминантность и рецессивность признака алюмоустойчивости гибрид Title  !"#$%&'()*+,-./0123456789:;<=>?@ABCDFGHIJKLMNOPQSTUVWXYZ[\]^_`abcdefghijklmnopqstuvwxyz{|}~Root Entry F`wEMGData E&1TableR?WordDocumentBSummaryInformation(rdHDocumentSummaryInformation8CompObjq  FMicrosoft Office Word Document MSWordDocWord.Document.89q