CATALOGUE OF GENE SYMBOLS FOR WHEAT: 2002 Supplement

 

R.A. McIntosh1, K.M. Devos2, J. Dubcovsky3 and W.J. Rogers4

1Plant Breeding Institute, The University of Sydney, 107 Cobbitty Road, Cobbitty, N.S.W., Australia, 2570.

2John Innes Centre, Norwich Research Park, Colney, Norwich, Norfolk, NR4 7UH, U.K.

3Department of Agronomy and Range Science, University of California, Davis, 95616 CA, U.S.A.

4Catedra de Genetica y Fitotecnia, Universidad Nacional del Centro de la Provincia de Buenos Aires, 7300 Azul, Argentina.

 

The most recent edition of the Catalogue appeared in the Proceedings of the 9th International Wheat Genetics Symposium Vol. 5 (A.E. Slinkard ed., University Extension Press, University of Saskatchewan, Saskatoon, Canada). A modified version is displayed on the Graingenes Website: http://wheat.pw.usda.gov/. The 1999 and 2000 Supplements are included in Annual Wheat Newsletters and Wheat Information Service and are listed in the Graingenes Website.  The present Supplement will be offered to editors/curators for similar listing.

 

Revisions

10. Laboratory Designators for DNA markers

barc

Cregan, P.

USDA-ARS

Bldg 006, HH-19 BARC-WE

Beltsville, MD 20705-2350

USA

unl

Gill, K.

kgill@unl.edu

Department of Agronomy

362H Plant Science

P.O. Box 830915

University of Nebraska, Lincoln

Lincoln NE68583-0915

USA

cnl

Sorrells, M.

mes12@cornell.edu

Dept. of Plant Breeding & Biometry

Cornell University

252 Emerson Hall

Ithaca, NY 14853

USA

uaz

Helentjaris,T.

(University of Arizona*)

Pioneer Hi-Bred International

7250 N.W. 62nd Avenue

Johnston IA 50131

USA

gdm

Rφder, M.S.

roder@mendel.ipk-gatersleben.de

(Gatersleben D-genome microsatellite*)

Institut fuer Pflanzengenetik und Kulturpflanzenforschung (IPK)

Corrensstr. 3

06466 Gatersleben

Germany

ucg

Hasselkorn, R.

rh01@midway.uchicago.edu

Department of Molecular Genetics and Cell Biology

University of Chicago*

Chicago, Illinois 60637

USA

isc

Luigi Cattivelli

l.cattivelli@iol.it

Istituto Sperimentale Cerealicoltura*

Via S. Protaso, 302

Fiorenzuola d'Arca (PC)

I-29017 Italy

 

 

 

 

Gross Morphology: Spike characteristics

5.             Elongated glume

P1.  Revise:

P1.

[P {911}; Eg {922}; P-Apol1 {0254}; P-Apet1 {0254}].

7AL {922,1547}, 7A or 7B (based on linkage of 0.2 with a gene for red coleoptile {922}.

 

i:

Saratovskaya 29*8//Novsibirskaya 67*2/T. polonicum {922}.

 

itv:

P-LD222 = LD222*11/T. turgidum var polonicum {1546,1547}.

 

tv:

T. polonicum {0254}; T. petropavlovskyi {0254}.

 

ma:

Xgwm260-7A (S) - 2.3 cM - P1 - 5.6 cM - Xgwm1083-7A (L) {0254}; Xgwm890-7A  - 2.1 cM - P1 {0254}.

Add at the end of the 'Elongated glume' section:

Note: The loci determining elongated glumes in the T. turanicum and T. durum conv. falcatum are not homoeologous to the P loci in the centromeric region of the group 7 chromosomes {0254}.

 

Alkylresocinols Content in Grain

Ar1 {0281}.

5AL {0281}.

 

High alkylresocinols content is dominant {0281}.

 

 

tv: 

Langdon {0281}.

ar1 {0281}.

 

tv:

Ardente {0281}.  This cultivar has a low content compared to all tested durum and common wheats {0281}

 

 

 

 

 

Aluminium Tolerance

Alt2.  ma:  Add: ‘Alt2 cosegregated with Xbcd1230-4D and fell within the interval Xgdm125-4D – 4.8cM – Alt2 – 1.1cM – Xpsr914-4D {0248}.’.

 

Anthocyanin Pigmentation

3.         Red/purple coleoptiles

Replace the previous entries with:

There is an orthologous gene series on the short arms of homoeologous group 7.  The 'a' alleles confer red coleoptiles.

Rc-A1a {0250}.

[Rc1, R {401}].

7A {769,1293}, 7AS {0250}.

s:

CS*6/Hope 7A {1293}.

 

v:

Hope Rc-B1

 

ma:

Rc-A1 (distal) - 11.9 cM - Xgwm913-7A {0250}.

Rc-B1a {0250}.

[Rc2, R2 {401}].

7B {742}, 7BS {401, 769, 0250}

s:

CS*6/Hope 7B {769}.

 

v:

Hope Rc-A1.

 

ma:

Xgwm263-7B - 26.1 cM - Rc-B1 - 11.0 cM - Xgwm1184 {0250}.

Rc-D1a {0250}.

[Rc3 ].

7D {596}, 7DS {1241, 1444, 0250}.

 

 

 

v:

Mironovskaya 808 {1444}; Tetra Canthatch/Ae. squarrosa var. strangulata RL 5271, RL 5404 {1240}; Tetra Canthatch/Ae. squarrosa var. meyeri RL 5289, RL 5406 {1240}; Sears' T. dicoccoides/Ae. squarrosa = Sears' Synthetic {596}.

 

ma:

Rc-D1 (distal) - 3 cM - Xpsr108-7D {180}; Xgwm44-7D - 6.4 cM - Rc-D1 - 13.7 cM - Xgwm111-7D {0250}.

Tahir & Tsunewaki {1453} reported that T. spelta var. duhamelianum carries genes promoting pigmentation on chromosomes 7A and 7D and genes suppressing pigmentation on 2A, 2B, 2D, 3B and 6A.  Sutka {1444} reported a fourth factor in chromosome 6B and suppressors in 2A, 2B, 2D, 4B and 6A.

 

Awnedness

1.         Dominant Inhibitors

1.2. Tipped 1

B1 Revise ‘5AL {1293}.’ to ‘5AL {1293,0242}.’.

 

DNA Markers

Group 1S

Amendments:

Xabg500-1A. Revise the first column to 'Xabg500-1A {280}5, 1B,D {0252}1.'.

Xbcd446-1A. Add '(1BL).' in the last column.

Xbcd1124-1A,B. Revise the first column to 'Xbcd1124-1A {280}5, 1B {1529}1, 1D {0252}1.'.

Xbcd1706-1A,B. Revise the first column to 'Xbcd1796-1A {280}5, 1B {1529}1, 1D {0252}1.'.

Xcdo99-1B,D. Revise the first column to 'Xcdo99-1A {0252}1, 1B {154}1, 1D {1529}4.'.

Xcdo388-1B,D. Revise the first column to 'Xcdo388-1B.1 [{1529,0252}]1, 1D {1529}4.', add '[Xcdo388-1B {1529}, Xcdo388a-1B {0252}].' in the second column and revise the last column to '(1BL, 2B, 3D, 4A,D, 5A,B, 6A,D).'.

Xcdo534-1B. Revise the last column to '(3A, 6A,B,D, 7A).'.

Xcdo580-1A. Revise the first column to ‘Xcdo580-1A {280}1,3,5,{1529}1, 1D {0242}.

Xcdo658-1A,B,D. Revise the first column to 'Xcdo658-1A {280}3,5,{0252}1, 1B,D {445}1.'.

Xcdo1173-1A,B,D. Revise the first column to 'Xcdo1173-1A {280}3,5,{0252}1, 1B {1529}1,1D {445}1.'.

Xcdo1188-1A.1,B.1,D. Revise the first column to 'Xcdo1188-1A.1 [{280}]3,5,[{0252}]1, 1B.1 [{1529}]1, 1D {445}1.', add '[Xcdo1188-1A.{280}3,5,{0252}1, 1B {1529}1].' in the second column , and add '(1AL,BL).' in the last column.

Xcdo1340-1B. Revise the first column to 'Xcdo1340-1A {0252}, 1B {1529}, 1D {0252}.' and add '(1BL).' to the last column.

Xcmwg645-1A.2. Revise the first column to 'Xcmwg645-1A.1 {280}3,5,[{0252}]1, 1B.1, D.1 [{0252}]1.' and add '[Xcmwg645a-1A,B,D {0252}1].' in the second column.

Xgwm18-1B. Add ‘(4B).’ in the last column.

Xgwm33-1A. Revise the first column to 'Xgwm33-1A {1226}1, 1B {0270}2.' and add '(1BL).' in the last column.

Xgwm136-1A. Revise the first column to 'Xgwm136-1A {9929},{0269}2.'.

Xgwm273-1B. Revise the first column to 'Xgwm273-1B {9929},{0270}2.'.

Xgwm413-1B. Revise the first column to 'Xgwm413-1B {9929},{0270}2.'.

XksuE19-1A,B,D. Revise the last column to ‘(6D, 7B).’.

XksuF43-1B.1,.2. Revise the first column to 'XksuF43-1A {252}, 1B.1,.2 {1529}, 1D {0252}.'.

Xmwg60-1A. Revise the first column to 'Xmwg60-1A {280}1,5, 1B,D {0250}1.'.

Xmwg68-1A,B. Revise the first column to 'Xmwg68-1A {280}5,{0252}1, 1B {1529}1, 1D {0252}.'.

Xmwg837-1B.1,D. Revise the first column to 'Xmwg837-1A [{0252}], 1B.1,D {1529}.' and add '[Xmwg837a-1A {0252}].' in the second column.

Xmwg938-1B,D. Revise the first column to 'Xmwg938-1A [{0252}], 1B.1 [{1529,0252}], 1D {1529}.', add '[Xmwg938a-1A,B {0252}, Xmwg938-1B {1529}].' in the second column and revise the last column to  '(1BL, 7A).'

Xmwg2021-1A.2,.2. Revise the first column to 'Xmwg2021-1A.1 {280}3,5, 1A.2 {280}1, 1B.1,D [{0252}].', add '[Xmwg2021a-1B,D {0252}].' in the second column and revise the last column to '(1BL, 2A, 3A).'.

Xmwg2048-1A. Revise the first column to 'Xmwg2048-1A {282}3,{0252}1, 1B,D {0252}1.'.

Xmwg2083-1A. Revise the first column to 'Xmwg2083-1A {280}5, [{0250}]1, 1B.1,D [{0252}]1.', add '[Xmwg2083a-1B,D {0252}].' in the second column and add '(1BL).' in the last column.

Xmwg2245-1D. Revise the first column to 'Xmwg2245-1A,B {0252}, 1D {0135}.'.

Xpsr596-1A,B,D. Add ‘(2B, 3A).’ in the last column.

Xrz244-1A. Revise the first column to 'Xrz244-1A {1529}, 1B,D {0252}.'.

Xsfr2(Lrk10)-1A. Revise the first column to 'Xsfr2(Lrk10)-1A [{356,0252}], 1B,D [{0252}].' and revise the second column to '[Lrk10 {356}, XLrk10-1A,B,D {0252}].'.

Xutv1391-1: Revise the first column to 'Xutv1391-1A {9959}2, 1B {0269}2.'

 

Add:

Xabg53-1A,B,D {0252}.

 

ABG53.

 

Xabg59-1B,D {0252}.

 

ABG59.

 

Xabg74-1A,B,D {0252}.

 

ABG74.

 

Xabg494-1A,B,D {0252}.

 

ABG494.

 

Xbcd368-1A {0242}.

 

BCD368.

 

Xbcd371-1B  {0275}.

 

BCD371.

 

Xbcd762-1A.2,B.2,D [{0252}].

[Xbcd762a-1A,B,D {0252}].

BCD762.

(1AL,BL)

Xbcd1340-1A,B,D {0252}.

 

BCD1340.

 

Xcdo127-1A,B.1,D [{0252}].

[Xcdo127a-1A,B,D {0252}].

CDO127.

(1B, 3A).

Xcdo127-1B.2 [{0252}].

[Xcdo127b-1B {0252}].

CDO127.

(1A,B,D, 3A).

Xcdo580-1A,B.1,D [{0252}].

[Xcdo580a-1A,B,D {0252}].

CDO580.

(1B).

Xcdo580-1B.2 [{0252}].

[Xcdo580b-1B {0252}].

CDO580.

(1A,B,D).

Xcdo618-1B {0269}2.

 

CDO618.

(1A,B,D).

Xcdo1373-1B {0269}2.

 

CDO1373.

(1BL).

Xcdo1423-1A,B,D {0252}.

 

CDO1423.

 

Xmwg835-1A,B.1,D [{0252}].

[Xmwg835a-1A,B,D {0252}.

MWG835.

(1BL, 2A, 5A).

Xmwg913-1B.1 [{0252}].

[Xmwg913a-1B {0252}].

MWG913.

(1BS).

Xmwg913-1B.2 [{0252}].

[Xmwg913b-1B {0252}].

MWG913.

(1BS).

Xmwg2056-1A,B,D [{0252}].

[Xmwg2056a-1A,B,D {0252}].

MWG2056.

(1BL).

Xmwg2148-1A,B.1,D [{0252}].

[Xmwg2148a-1A,B,D {0252}].

MWG2148.

(1BL).

Xmwg2197-1A,B {0252}.

 

MWG2197.

 

Xsun18-1B {0256}.

 

SUN 18F/SUN18R.

 

Xuaz299-1B {0269}2.

 

UAZ299.

 

Xutv1366-1A.1 {0269}.2

[Xutv1366d-1A {0269}2].

UTV1366.

 

Xutv1366-1A.2 {0269}2.

[Xutv1366c-1A {0269}2].

UTV1366.

 

Xwmc24-1A [{0242}].

[Xwmc024-1A {0242}].

WMC 24F/WMC 24R.

(2A).

Xwmc147-1D {0242}.

 

WMC 147F/WMC 147R.

 

Xwmc336-1D {0242}.

 

WMC 336F/WMC 336R.

 

Xwmc432-1D {0242}.

 

WMC 432F/WMC 432R.

 

 

 

 

 

 

Group 1L

Amendments:

Xabc151. Revise the first column to 'Xabc151-1B {0252}1, 1D {1529}4.'.

Xabg452. Revise the first column to 'Xabg452-1A {1529}1,{280}1,3,5, 1B,D {0252}1.'.

Xbcd22-1A. Revise the first column to ‘Xbcd22-1A {280}5, 1B {0242,0252}1, 1D {0252}1.’ and revise the last column to ‘(3A,D)’.

Xbcd207-1A. Revise the first column to 'Xbcd207-1A {280}5, 1B {0274}1.'

Xbcd310-1B. Revise the first column to ‘Xbcd310-1A {0242}, 1B {445}.’.

Xbcd265-1A,B,D. Revise the last column to ‘(2B, 4B,D, 5A).’.

Xbcd762-1A,B. Revise the first column to 'Xbcd762-1A.1 [{280}]5, 1B.1 [{1529,0252}]1.', add '[Xbcd762-1A {280}5, Xbcd762-1B {1529}1, Xbcd762b-1B {0252}1].' in the second column and add '(1AS,BS,DS).' in the last column.

Xbcd808-1A.1, .2.  Revise the first column to ‘Xbcd808-1A.1 {1529}1,{280}1,3,5, 1A.2 {1529}, 1B {0242}.’.

Xbcd921-1A,D. Revise the first column to 'Xbcd921-1A {280}5, 1B {0252}1, 1D {445}1.'

Xcdo105-1A. Revise the first column to 'Xcdo105-1A {280}1,5, 1B {0275}1.'.

Xcdo393-1A,B. Revise the first column to ‘Xcdo393-1A {1529}1, {280}3, 1B {154}, 1D {0242}.’.

Xcdo346-1B. Revise the last column to '(2B, 5D).'.

Xcdo473-1A. Revise the first column to ‘Xcdo473-1A {1529}, 1B {0242}.’.

Xcdo1160-1A. Revise the first column to 'Xcdo1160-1A {1529}, 1B {0275}.'.

Xcdo1396-1A. Revise the first column to 'Xcdo1396-1A {280}5, 1B {0275}1.'.

Xcmwg645-1A.2. Revise the first column to 'Xcmwg645-1A.2 {280}5, 1B.2 [{1529,0250}]1.', add [Xmwg645 {280,1529}, Xcmwg645b-1B {0252}].' in the second column and revise the last column to '(1AS,BS,DS, 5A).'.

Xcmwg758-1A,B. Revise the first column to 'Xcmwg758-1A {280}1,3,5, 1B {1529}1, 1D {0252}.'.

Xgwm124-1B. Revise the first column to 'Xgwm124-1B {9929}1,{0270}2.'.

Xgwm153-1B. Revise the first column to 'Xgwm153-1B {9929}1,{0270}2.'.

Xgwm268-1B. Revise the first column to 'Xgwm268-1B {9929}1,{0270}2.'.

Xgwm403-1B. Revise the first column to 'Xgwm403-1B {9929}1,{0270}2.'.

Xgwm498-1B. Revise the first column to 'Xgwm498-1B {9929},{0270}2.'.

XksuA1-1B. Revise the last column to ‘(2D, 3B, 5B, 7D).’.

XksuD49-1B,D. Revise the first column to ‘XksuD49-1A {0242}, 1B {728}, 1D {448}1,4, {1529}1.’.

Xmwg837-1B.2. Add '(1AS,BS,DS).' in the last column.

Xwg180-1A. Revise the last column to ‘(4B, 7BS,L).’.

 

Add:

Xbcd372-1B,D {0252}.

 

BCD372.

(3A,D).

Xbcd402-1D {0242}.

 

BCD402.

(4A, 5A,4B,D).

Xbcd446-1B  {0275}.

 

BCD446.

(1AS).

Xbcd1495-1B {0269}2.

 

BCD1495.

(6B).

Xcdo388-1B.2 [{0252}].

[Xcdo388b-1B {0252}].

CDO388.

(1BS,DS, 2B, 3D, 4A,D, 5A,B, 6A,D). 

Xcdo583-1B [{0242}].

[Xcdo583a-1B {0242}].

CDO583

(3B).

Xcdo1340-1B {0269}2.

 

CDO1340.

(1AS,BS,DS).

Xcdo1373-1B {0269}2.

 

CDO1373.

(1BS).

Xmwg539-1A,B,D {0252}.

 

MWG539.

(7D).

Xmwg584-1A,,B,D {0252}.

 

MWG584.

(3A, 4Am, 5D).

Xmwg835-1B.2 [{0252}].

[Xmwg835b-1B {0252}].

MWG835.

(1AS,BS,DS, 2A, 5A).

Xmwg896-1A,B,D {0252}.

 

MWG896.

 

Xmwg938-1B.2 [{0252}].

[Xmwg938b-1B {0252}].

MWG938.

(1AS,BS,DS, 7A).

Xmwg2021-1B.2 [{0252}].

[Xmwg2021b-1B {0252}].

MWG2021.

(1AS,BS,DS, 2A, 3A).

Xmwg2056-1B.2 [{0252}].

[Xmwg2056b-1B {0252}].

MWG2056.

(1AS,BS,DS).

Xmwg2083-1B.2 [{0252}].

[Xmwg2083b-1B {0252}].

MWG2083.

(1AS,BS,DS).

Xmwg2148-1B.2 [{0252}].

[Xmwg2148b-1B {0252}].

MWG2148.

(1AS,BS,DS, 1BL).

Xmwg2148-1B.3 [{0252}].

[Xmwg2148c-1B {0252}].

MWG2148.

(1AS,BS,DS, 1BL)

Xpsr305-1B {0242}.

 

PSR305.

(3A,B,D).

Xuaz243-1B {0269}2.

 

UAZ243.

 

Xutv135-1A {0269}2.

 

UTV135.

(3BS, 4B).

Xutv1441-1A {0269}2.

 

UTV1441.

(3BL, 4B).

Xwmc304-1A {0242}.

 

WMC 304F/WMC 304R.

 

Xwmc312-1A {0242}.

 

WMC 312F/WMC 312R.

 

Xwmc373-1B [{0242}].

[Xwmc373-1-1B {0242}].

WMC 373F/WMC 373R.

 

Xwmc429-1D {0242}.

 

WMC 429F/WMC 429R.

 

 

 

 

 

                               

Group 1

Amendments:

Xcmwg758-1D. Revise the last column to '(1AL,BL,DL).'.

Xwg232-1A. Revise the last column to ‘(4A,B, 5A,B,D, 6B, 7A,B).’.

Xwpg501(Pdi)-1B.  Add reference 0263 in the first column, i.e. ‘{0064,0263}’.

 

Add:

Xbcd175-1A {0242}.

 

BCD175.

 

Xbcd1072-1A,B,D {0252}.

 

BCD1072.

 

Xsun19-1B {0156}.

 

SUN 19F/SUN 19R.

 

Xwmc84-1A [{0242}].

[Xwmc084-1A  {0242}].

WMC 84F/WMC 84R.

 

Xwmc406-1B {0242}.

 

WMC 406F/WMC 406R.

 

 

 

 

 

 

Group 2S

Amendments:

Xabg378-2A. Revise the last column to ‘(6A,D, 7A,4A).’.

Xbcd152-2A,B. Add '(6B).' to the last column.

Xbcd348-2A.1,.2,B,D. Add '(4A).' to the last column.

Xbcd718-2A,D. Revise the first column to 'Xbcd718-2A {1060}1, 2B {0269}2, 1D {1060}1. '.

Xcdo1090-2A. Revise the first column to 'Xcdo1090-2A {1060}, 2B {0269}2.'.

Xfba38-2D. Revise the first column to ‘Xfba38-2B {0242}, 2D {1060}.’. 

Xfbb185-2B. Revise the last column to ‘(3B, 6B).’.

Xfba349-2D. Add ‘(7A).’ to the last column.

Xgwm129-2B. Revise the last column to ‘(4D, 5A).’.

Xpsr801(Rbcs)-2A,B,D. To the note added to this listing in the 2001 Supplement add the reference 0271, i.e. ‘{0149,0271}’.

 

Add:

Xbcd175-2D {0242}.

 

BCD175.

 

Xbcd221-2B {0269}2.

 

BCD221.

(4B, 6B).

Xcnl9(Pdc)-2B [{0269}]2.

[Pdc-2B {0269}2].

Pdc.

 

Xpsr596-2B {0242}.

 

PSR596.

(1A,B,D, 3A).

Xsun17-2D {0256}.

 

SUN 17F/SUN 17R.

 

Xwmc25-2B [{0242}].

[Xwmc025.2-2B {0242}].

WMC 25F/WMC 25R.

(2D).

Xwmc111-2D {0242}.

 

WMC 111F/WMC 111R.

 

Xwmc112-2D {0242}.

 

WMC 112F/WMC 112R.

 

Xwmc154-2B {0242}.

 

WMC 154F/WMC 154R.

 

Xwmc314-2B {0242}.

 

WMC 314F/WMC 314R.

 

 

 

 

 

 

Group 2L

Amendments:

Xabc451-2A. Revise the first column to ‘Xabc451-2A {282}3, 2B [{0242}], 2D {0242}.’ and add ‘[Xabc451a-2B {0242}].’ in the second column. 

Xbcd135-2B,D. Add ‘(4A, 5D).’ in the last column.

Xbcd266-2D. Revise the first column to ‘Xbcd266-2A {0242}, 2B {0164}, 2D {864}.’.

Xbcd292-2A,D. Revise the first column to ‘Xbcd292-2A {1060}`, 2B {0242}1,{0269}2, 2D {864}1.’.

Xbcd410-2A,D. Revise the first column to ‘Xbcd410-2A {1060}, 2B [{0242}], 2D {1060}.’ and add ‘[Xbcd410d-2B {0242}].’ in the second column.

Xgwm526-2B. Add '(2A).' in the last column.

XksuF43-2D. Revise the last column to '(1A,B,D, 4D, 5D, 6D).'.

Xmwg835-2A. Revise the last column to '(1A,B,D, 5A).'.

Xmwg950-2B. Revise the first column to ‘Xmwg950-2B {1060}, 2D {0242}.’.

Xmwg2021-2A. Revise the last column to '(1A,B,D, 3A).'.

Xutv861-2B. Revise the first column to 'Xutv861-2A {0269}2, 2B {9959}2.'.

Xwg184-2D. Revise the last column to ‘(3D, 4D, 5A).’.

 

Add:

Xabc165-2D.2 [{0242}].

[Xabc165b-2D {0242}]

ABC165.

(2D).

Xbcd265-2B [{0242}].

[Xbcd265c-2B {0242}].

BCD265.

(1A,B,D, 4B,D, 5A).

Xbcd512-2B {0242}.

 

BCD512.

 

Xcdo346-2A {0269}2.

 

CDO346.

(1B, 5D).

Xcdo365-2B {0269}2.

 

CDO365.

(6B).

Xcdo669-2B [{0242}].

[Xcdo669a-2B {0242}].

CDO669.

(4A,B,D, 7A).

Xgwm526-2A [{0253}].

[Xgwm526-2A.2 {0253}].

WMS F526/WMS R526.

(2B).

Xisc14(Cor)-2A [{0246}]3.

[Cor14b {0246}].

COR14b.

 

XksuA1-2D [{0242}].

[XksuA1b-2D {0242}].

pTtksuA1.

(1B, 3B, 5B, 7D).

XksuF37-2B {0242}.

 

pTtksuF37.

(6A,B,D).

Xksu931(Chi4)-2D [{0266}]4.

[Xksu931(Cht4) {0266}].

SM383.

 

Xksu932(Chi7)-2D [{0266}]4.

[Xksu932(Cht7) {0266}].

SM194.

 

Xpsp3045-2A {0253}.

 

PSP3045F/PSP3045R.

(5B, 7D).

Xpsr370-2B,D [{0242}].

[Xpsr370b-2B, Xpsr370a-2D {0242}].

PSR370.

(5A,B,D).

Xsun11-2B {0256},[{0242}].

[Xsunm11-2B {0242}].

SUN 11F/SUN 11R.

 

Xsun21-2B {0256}.

 

SUN 21F/SUN 21R.

 

Xsun22-2B {0256}.

 

SUN 22F/SUN 22R.

 

Xwmc339-2B {0242}.

 

WMC 339F/WMC 339R.

 

Xwmc360-2B {0242}.

 

WMC 360F/WMC 360R.

 

 

Group 2

Amendments:

Xabg356-2D. Revise the first column to ‘Xabg356-2B {0242}, 2D {9926}4.’.

Xwmc24-2A. Add ‘(1A).’ in the last column.

Xwmc25-2D. Add ‘(2B).’ in the last column.

Xwmc149-2B. Add ‘(5B).’ in the last column.

 

Add:

Xabc162-2A {0242}.

 

ABC162.

 

Xabc165-2D.1 [{0242}].

[Xabc165a-2D {0242}].

ABC165.

(2DL).

Xcdo366-2B,D {0242}.

 

CDO366.

 

Xcdo665-2A {0242}.

 

CDO665.

(4A).

Xgwm271-2B [{0242}].

[Xgwm271a-2B {0242}].

WMS F271/WMS R271.

(5B, 5D).

XksuE7-2B {0242}.

 

pTtksuE7

(7D).

Xstm773-2B {0242}.

 

STM 773F/STM 773R.

 

Xwmc18-2D [{0242}].

[Xwmc018-2D {0242}].

WMC 18F/WMC 18R.

 

Xwmc35-2B [{0242}].

[Xwmc035a-2B {0242}].

WMC 35F/WMC 35R.

(4B).

Xwmc190-2D {0242}.

 

WMC 190F/WMC 190R.

 

Xwmc198-2A {0242}.

 

WMC 198F/WMC 198R.

 

Xwmc445-2B {0242}.

 

WMC 445F/WMC 445R.

 

 

 

 

 

 

Group 3S

Amendments:

Xabg471-3A,B. Add '(6B).' to the last column.

Xcdo395-3A,D. Revise the first column to ‘Xcdo395-3A {1061}1, 3B {0242}1, 3D {9926}4.’.

Xfbb185-3B. Revise the last column to ‘(2B, 6B).’.

Xgwm369-3A. Revise the first column to 'Xgwm369-3A {9929}1,{0269}2.'.

Xgwm389-3B. Revise the first column to 'Xgwm389-3B {9929}1,{0269}2.'.

XksuA1-3B. Revise the last column to ‘(1B, 2D, 5B, 7D).’.

XksuB8-3D. Revise the first column to ‘XksuB8-3A,B {0242}, 3D {448}.’. 

Xmwg584-3A. Revise the last column to '(1A,B,D, 4Am, 5D).'.

Xmwg2021-3A. Revise the last column to '(1A,B,D, 2A).'.

Xpsr305-3A,B,D.  Add ‘(1B).’ to the last column.

Xsfr2(Lrk10)-3B,D. Revise the last column to '(1A,B,D).'.

 

Add:

Xpsr311-3A {0242}.

 

PSR311.

(7A,B,D).

Xutv135-3B {0269}2.

 

UTV135.

(1A, 4B).

Xwmc11-3A [{0242}].

[Xwmc011-3A {0242}].

WMC 11F/WMC 11R.

 

Xwmc43-3B [{0242}].

[Xwmc043-3B {0242}].

WMC 43F/WMC 43R.

 

 

 

 

 

 

Group 3L

Amendments:

Xbcd115-3A,D. Revise the first column to 'Xbcd115-3A {1061}, 3B {0269}2, 3D [{862}].

Xbcd22-3D.  Revise the first column to ‘Xbcd22-3A {0242}, 3D {1061}.’ and revise the last column to ‘(1A,B,D).’.

Xbcd195-3B. Revise the first column to 'Xbcd195-3A {0269}2, 3B {0078}1.'.

Xbcd372-3A,D. Add '(1B,D).' to the last column.

Xbcd451-3A,D. Revise the first column to ‘Xbcd451-3A {1061}, 3B {0242}, 3D [{862}].’.

Xcdo105-3B. Revise the last column to '(1A,B).'.

Xcdo482-3A,D. Revise the first column to ‘Xcdo482-3A {1061},3B {0242}, 3D {862}.’.

Xcdo583-3B.  Add ‘(1B).’ to the last column.

Xcdo718-3B. Revise the first column to ‘Xcdo718-3A {0242}, 3B {1061}.’. 

Xfba175-3A. Add '(6B).' in the last column.

Xgwm155-3A. Revise the first column to 'Xgwm155-3A {9929}1,{0269}2.'.

Xgwm299-3B. Revise the first column to 'Xgwm299-3B {9929}1,{0269}2.'.

XksuG59-3A,D. Revise the first column to ‘XksuG59-3A {282}3, 3B {0242}1, 3D {448}4, {1061}1.’.

Xutv416-3A. Revise the first column to 'Xutv416-3A {9959}2, 3B {0269}2.'.

Xutv560-3A. Revise the first column to 'Xutv560-3A {9959}2, 3B.1,.2 [{0269}]2.' and add '[Xutv560a,b-3B {0269}].' in the second column.

 

Add:

Xabg75-3B {0242}.

 

ABG75.

 

Xbcd941-3A {0175}.

 

BCD941.

 

Xcdo534-3A {0269}2.

 

CDO534.

(1B, 6A,B,D, 7A).

Xksu933(Glb3)-3B,D {0266}.

 

SM289.

 

Xksu934(Glb3)-3D {0266}.

 

SM638.

 

Xmwg2153-3A {0269}2.

 

MWG2153.

 

Xpsr596-3A,B [{0242}].

[Xpsr596b-3A, Xpsr596a-3B {0242}].

PSR596.

(1A,B,D, 2B).

Xpsr604-3B [{0242}].

[Xpsr604-3B {0242}].

PSR604.

(7A,4A,7D).

Xsun23-3A {0256}.

 

SUN 23F/SUN 23R.

 

Xucg2(Acc-2)-3A,B,D [{0265}].

[Xucg2-3A,B,D {0265}].

UCG2.

(5D).

Xutv601-3A {0269}2.

 

UTV601.

 

Xutv920-3A {0269}2.

 

UTV920.

 

Xutv1151-3A {0269}2.

 

UTV1151.

(6A).

Xutv1371-3B {0269}2.

 

UTV1371.

(1AL, 4B).

Xutv1441-3B {0269}2.

 

UTV1441.

 

Xutv1474-3A {0269}2.

 

UTV1474.

 

Xwmc169-3A {153,0238}.

 

WMC 169F/WMC 169R.

 

Xwmc236-3B {0242}.

 

WMC 236F/WMC 236R.

 

Xwmc334-3B {0242}.

 

WMC 334F/WMC 334R.

 

Xwmc428-3A {0242}.

 

WMC 428F/WMC 428R.

 

 

 

 

 

 

Group 3

Amendments:

Xwg184-3D. Revise the last column to ‘(2D, 4D, 5A).’.

Xwmc169-3A. Delete (moved to 3L).

 

Add:

Xwmc50-3A [{0242}].

[Xwmc050-3A {0242}].

WMC 50F/WMC 50R.

 

Xwmc375-3D {0242}.

 

WMC 375F/WMC 375R.

 

Xwmc379-3A {0238}.

 

WMC 379F/WMC 379R.

 

 

 

 

 

 

Group 4S (4AL:4BS:4DS)

Amendments:

Xbcd265-4B,D. Revise the last column to ‘(1A,B,D, 2B, 5A).’.

Xbcd583-4A. Revise the last column to ‘(1A,B).’.

Xbcd402-4A. Revise the last column to ‘(1D, 5A,4B,D).’. 

Xcdo669-4A,B,D. Add ‘(2B, 4Am).’ in the last column.

Xcdo795-4B. Revise the first column to ‘Xcdo795-4A {0242}, 4B {1059}.’. 

Xgwm18-4B.  Add ‘(1B).’ in the last column.

Xwg184-4D. Revise the last column to ‘(2D, 3D, 5A).’.

 

Add:

Xcdo949-4B {0269}2.

 

CDO949.

(4DL).

Xcn110(Lpx-B1)-4B [{0269}]2.

[Loxmjt].

LOXMJT.

 

Xfba363-4B {0242}.

 

FBA363.

(7A).

Xutv434.1-4A.1,.2 [{0269}]2.

[Xutv434a,b-4A {0269}2].

UTV434.

(4A).

Xwg232-4B {0269}2.

 

WG232.

(1A, 4A, 5A,B,D, 6B, 7A,B).

Xwmc141-4B {0242}.

 

WMC 141F/WMC 141R.

 

 

 

 

 

 

4AmS

Amendments:

Xcdo66-4A. Revise the last column to ‘(2B, 4A,B,D).’.

Xmwg584-4A.1. Revise the last column to (1A,B,D, 3A, 4AmL, 5D).'.

Xwg622-4A. Revise the last column to ‘(4AL,BS,DS, 6A).’.

 

Group 4L (4AS:4BL:4DL)

Amendments:

Xcdo1395-4B. Revise the first column to 'Xcdo1395-4B {1008}, 4D {0248}.'.

Xwg622-4A,B,D. Add ‘(6A).’ in the last column.

 

Add:

Xbcd1230-4D {0248}.

 

BCD1230.

 

 

 

 

 

 

4AmL

Amendments:

Xabg463-4A. Revise the last column to ‘(4D, 5A, 5B).

Xmwg584-4A.2. Revise the last column to '(1A,B,D, 3A, 4AmS, 5D).

 

Group 5AL:4BL:4DL

Amendments:

Xbcd402-5A,4B,D. Revise the last column to ‘(1D, 4A).’.

Xcdo949-4D. Add ‘(7B).’ in the last column.

Xutv434-4A.1. Revise the last column to '(4AS, 4AL).'.

 

Group 4

Amendments:

Xabg397-4D. Add ‘(5A).’ in the last column.

Xabg463-4D. Revise the last column to ‘(4A, 5B, 5D).’.

XksuF43-4D.1. Revise the last column to '(1AB,D, 2D, 4D, 5D, 6D).'.

XksuF43-4D.2. Revise the last column to '(1A,B,D, 2D, 4D, 5D, 6D).'.

Xwg232-4A. Revise the last column to ‘(1A, 4B, 5A,B,D, 6B, 7A,B).’.

Xwmc35-4B. Add ‘(2B).’ in the last column.

Xwpg501(Pdi)-4A,B,D.  Add reference 0263 in the first column, i.e. ‘{0064,0263}’.

 

Add:

Xbcd221-4B {0269}2.

 

BCD221.

(2B, 6B).

Xbcd1975-4A {0269}2.

 

BCD1975.

(7D).

Xbcd348-4A {0269}2.

 

BCD348.

(2A,B,D).

Xcdo414-4A {0269}2.

 

CDO414.

(7B).

Xcdo949-4A [{0242}].

[Xcdo949b-4A {0242}].

CDO949.

(4D).

Xgwm129-4D {0242}.

 

WMS F129/WMS R129.

(2B, 5A).

Xgwm613-4A {0269}2.

 

WMS F613/WMS R613.

(6B).

Xstm91-4D {0242}.

 

STM 91F/STM 91R.

 

Xutv135-4B {0269}2.

 

UTV135.

(1A, 3B).

Xutv434-4A.3 [{0269}]2.

[Xutv434d-4A {0269}2].

UTV434.

(4AL).

Xutv1136-4A.1,.2 [{0269}]2.

[Xutv1136a,c-4A {0269}2].

UTV1136.

 

Xutv1441-4B {0269}2.

 

UTV1441.

(1A, 3B).

Xwg180-4B [{0242}].

[Xwg180a-4B {0242}].

WG180.

(1A, 7BS,L).

Xwmc47-4B [{0242}].

[Xwmc047-4B {0242}].

WMC 47F/WMC 47R.

(7A).

Xwmc48-4A,B,D [{0242}].

[Xwmc048a-4A , Xwmc048c-4B, Xwmc048b-4D {0242}].

WMC 48F/WMC 48R.

 

 

 

 

 

 

Group 5S

Amendments:

Xabg873-5B. Revise the first column to ‘Xbcd873-5B {1059}, 5D {0242}.’ and add ‘(7A,D).’ in the last column.

Xbcd207-5A. Revise the last column to '(1A,B).'.

Xgwm129-5A. Revise the last column to ‘(2B, 4D).’.

Xgwm443-5B. Add ‘(5A).’ in the last column.

Xmwg835-5A. Revise the last column to '(1A,B,D, 2A).'.

 

Add:

Xabg397-5A {0242}.

 

ABG397.

(4D).

Xcdo465-5A {0269}2.

 

CDO465.

(5AL,BL,DL).

Xgdm68-5D {0242}.

 

DMS 68F/DMS 68R.

(5A,B, 5DL).

Xgwm443-5A {0242}.

 

WMS F443/WMS R443.

(5B).

Xpsp3045-5B [{0253}].

[Xpsp3045-5B.2 {0253}.

PSP3045F/PSP3045R.

(2A, 7D).

Xwg184-5A {0242}.

 

WG184.

(2D, 3D, 4D).

Xwmc149-5B {0242}.

 

WMC 149F/WMC 149R.

(2B).

Xwmc159-5A {0242}.

 

WMC 159F/WMC 159R.

 

Xwmc233-5D {0242}.

 

WMC 233F/WMC 233R.

 

 

 

 

 

 

Group 5L

Amendments:

Xabg473-5A,B,D. Revise the last column to ‘(6A,B).

Xbcd265-5A. Revise the last column to ‘(1A,B,D, 2B, 4B,D).’.

Xcdo346-5D. Revise the last column to '(1B, 2B).'.

Xcdo465-5A,B,D. Add '(5AS).' to the last column.

Xcdo1090-5A. Revise the last column to '(1A,B).'.

Xgdm68-5D. Revise the last column to ‘(5A,B, 5DS).

XksuA1-5B. Revise the last column to ‘(1B, 2D, 3B, 7D).’.

Xgwm271-5D. Add ‘(2B, 5B).’ in  the last column.

Xpsr370-5A,B,D. Add ‘(2B).’ to the last column.

Xwg232-5A,B,D. Revise the last column to ‘(1A, 4A,B, 6B, 7A,B).’.

 

Add:

Xabg463-5B {0242}.

 

ABG463.

(4A,D, 5D).

Xcdo775-5B {0269}2.

 

CDO775.

(7A,B,D).

Xcn111(Lpx-B2)-5B [{0269}]2.

[Lox11-1 {0269}2].

LOX11-1.

 

Xgwm271-5B [{0242].

 

WMS F271/WMS R271.

(2B, 5D).

Xstm652-5B {0242}.

 

STM 652F/STM 652R.

 

XsunG5-5B [{0242}].

[XsunG5B-5B {0242}].

SUN G5F/SUN G5R.

 

Xucg2(Acc-2)-5D [{0265}].

[Xucg2-5D {0265}].

UCG2.

(3A,B,D).

Xunl1-5B {0247}.

 

UNL1.

 

Xunl2-5B {0247}.

 

UNL2

 

Xunl3-5B {0247}.

 

UNL3.

 

Xutv497-5A {0269}2.

 

UTV497.

 

Xutv1435-5A {0269}2.

 

UTV1435.

 

Xwmc28-5B [{0242}].

[Xwmc028-5B {0242}].

WMC 28F/WMC 28R.

 

Xwmc235-5B {0242}.

 

WMC 235F/WMC 235R.

 

Xwmc376-5B {0242}.

 

WMC 376F/WMC 376R.

 

 

 

 

 

 

4AL:5BL:5DL

Add:

Xcdo506-4A {0242}.

 

CDO506.

 

A Xcdo506-5D locus has been reported in {1059} in the 7BS:5BL:5DL category.  It is possible that this is a misclassification and that Xcdo506-4A and Xcdo506-5D are homoeologous.

Xwmc161-4A [{0242}].

[Xwmc161a-4A {0242}].

WMC 161F/WMC 161R.

 

Xwmc258-4A {0242}.

 

WMC 258F/WMC 258R.

 

 

 

 

 

 

Group 5

Amendments:

Xabg463-5D.1, .2. Revise the last column to ‘(4A,D, 5B).’.

Xcmwg645-5A. Revise the last column to '(1A,B,D).'.

Xgdm68-5A,B. Revise the last column to ‘(5DS, 5DL).’.

XksuF43-5D.1, .2. Revise the last column to '(1A,B,D, 2D, 4D, 6D).'.

Xmwg584-5D. Revise the last column to '(1A,B,D, 3A, 4A).

Xwg232-5A.1,B. Revise the last column to ‘(1A, 4A,B, 6B, 7A,B).’.

Xwg232-5A.2. Revise the last column to ‘(1A, 4A,B, 6B, 7A,B).’.

Xwg420-5D.1,.2. Revise the last column to ‘(7A,B,D).’.

 

Add:

Xabg3-5A,D [{0242}].

[Xabg3b-5A {0242}].

ABG3.

 

Xbcd135-5D {0242}.

 

BCD135.

(2B,D, 4A).

Xgwm304-5A {0242}.

 

WMS F304/WMS R304.

 

Xstm286-5B {0242}.

 

STM 286F/STM 286R.

 

Xstm337-5A [{0242}].

[Xstm337a-5A {0242}].

STM 337F/STM 337R.

(7B).

Xwmc96-5A [{0242}].

[Xwmc096-5A {0242}].

WMC 96F/WMC 96R.

 

Xwmc110-5A {0242}.

 

WMC 110F/WMC 110R.

 

 

 

 

 

 

Group 6S

Amendments:

Xabg378-6A,D. Revise the last column to ‘(2A, 7A,4A).’.

Xbcd1398-6D. Revise the first column to ‘Xbcd1398-6B {0242}, 6D {900}.’.

Xbcd1821-6A,D. Revise the first column to 'Xbcd1821-6A {900}, 6B {0244}, 6D {900}.'.

Xcdo270-6A,D. Revise the first column to 'Xcdo270-6A {900}1, 6B {0269}2, 6D {900}1.'.

Xcdo365-6B. Add '(2B).' to the last column.

Xcdo534-6A,B,D. Revise the last column to '(1B, 3A, 7A).'.

Xfba307-6A,D. Revise the first column to 'Xfba307-6A {900}, 6B {0244}, 6D {900}.'.

Xfba381-6B,D.2. Revise the first column to 'Xfba381-6B.2,D.2 [{0081}]', add '[Xfba381-6B {0081}]' in the second column and  revise the last column to '(6BL,DL)'.

Xfbb194-6A. Add ‘(4A).’ to the last column.

Xgwm132-6B. Add ‘(6D).’ to the last column.

Xgwm613-6B. Add '(4A).' to the last column.

Xgwm644-6B. Revise the first column to 'Xgwm644-6B {9929}1,{0269}2.'

XksuF43-6D. Revise the last column to '(1A,B,D, 2D, 4D, 5D).'.

Xmwg573-6A.2,B,D. Revise the last column to ‘(6AL, 6BL).’.

Xpsr546-6A. Revise the first column to ‘Xpsr546-6A.1 [{9927}]2.’, add [Xpsr546-6A {9927}2].’ in the second column and revise the third column to ‘(6AL, 6BL,DL).’.

 

Add:

Xabg471-6B {0269}2.

 

ABG471.

(3A,B).

Xbarc101-6B {0175}.

 

BARC F101/BARC R101 {0239}.

 

Xbcd152-6B {0269}2.

 

BCD152.

(2A,B).

Xbcd1299-6B {0269}2.

 

BCD1299.

 

Xfba175-6B.1 [{0244}].

[Xfba175a-6B {0244}].

FBA175.

(3A, 6BL).

Xgwm132-6D {0242}.

 

WMS F132/WMS R132.

(6B).

Xpsr119-6A [{0242}].

[Xpsr119a-6A {0242}].

PSR119.

(7A,4A,7D).

Xutv1151-6A.1,.2 [{0269}]2.

[Xutv1151a,b-6A {0269}2].

UTV1151.

(3A).

Xwmc104-6B {0032, 0276}

 

WMC F104/WMC R104 {0037}.

 

 

Group 6L

Amendments:

Xabc175-6A,D. Revise the first column to ‘Xabc175-6A {9927}2,{0081}1, 6B [{0242}]1,  6D {900}1.’ and add ‘[Xabc175a-6B {0242}].’ in the second column.

Xabg473-6B. Revise the first column to ‘Xabg473-6A {0242}, 6B {900}.’.

Xabg652-6A. Add ‘(7A).’ in the last column.

Xfba381-6D. Revise the first column to 'Xfba381-6B.1 [{0244}], 6D.1 [{900}]', revise the second column to '[Xfba381-6B {0244}, 6D {900}]', and add '(6BS,DS)' in the last column.

Xgwm427-6A. Revise the first column to 'Xgwm427-6B {9929}1,{0269}2.'.

XksuF37-6A,B. Add ‘(2B, 6D).’ in the last column.

Xmwg573-6A.1. Revise the last column to ‘(6AS,BS,DS, 6BL).’.

Xpsr546-6B,D. Revise the last column to ‘(6AS, 6AL).’.

 

Add:

Xbcd279-6B {0269}2.

 

BCD279.

 

Xcdo686-6B {0269}2.

 

CDO686.

(7B).

Xfba175-6B.2 [{0244}].

[Xfba175b-6B {0244}].

FBA175.

(3A, 6BS).

Xfbb185-6B [{0242}].

[Xfbb185c-6B {0242}].

FBB185.

(2B, 3B).

Xmwg573-6B {0242}.

 

MWG573.

(6AS,BS,DS, 6AL).

Xpsr546-6A.2 [{0242}].

[Xpsr546a-6A {0242}].

PSR546.

(6AS, 6BL,DL).

Xsun5-6D [{0242}].

[XsunM5b-6D {0242}].

SUN 5F/SUN 5R.

 

Xutv1136-6A {0269}2.

 

UTV1136.

 

Xwg622-6A {0242}.

 

WG622.

(4A,B,D).

Xwmc163-6A {0242}.

 

WMC 163F/WMC 163R.

 

 

 

 

 

 

Group 6

Amendments:

Xabc451-6D. Revise the last column to ‘(2A,B,D).’.

Xbcd221-6B. Add '(2B, 4B).' to the last column.

Xbcd1299-6B. Add '(6B).' to the last column.

Xbcd1495-6B. Add '(1B).' to the last column.

XksuE19-6D. Revise the last column to ‘(1A,B,D, 7B).’.

XksuF37-6D. Add ‘(2B, 6A,B).’ to the last column.

Xwmc76-6B. Add ‘(7B).’ to the last column.

Xwmc104-6B. Delete (entry moved to 6S).

Xwmg573-6D. Revise the last column to ‘(6AS,BS,DS, 6AL, 6BL).’.

 

Add:

Xwg232-6B [{0242}].

[Xwg232b-6B {0242}].

WG232.

(1A, 4A,B, 5A,B,D, 7A,B).

Xwmc416-6D {0242}.

 

WMC 416F/WMC 416R.

 

 

 

 

 

 

Group 7S

Amendments:

Xabc158-7A. Revise the first column to ‘Xabc158-7A {1059}, 7B {0242}.’.

Xabc465-7A,D. Revise the first column to ‘Xabc465-7A {282}3, 7B [{0242}]1, 7D {9926}4.’, add ‘[Xabc465a-7B {0242}].’ in the second column and add '(4A).' in the last column.

Xbcd310-7B.  Revise the last column to ‘(1A,B).’.

Xcdo534-7A. Revise the last column to '(1B, 3A, 6A,B,D).'.

Xcdo1395-7A. Revise the last column to '(4B,D).'.

Xfba363-7A. Add ‘(4B).’ in the last column.

Xgwm60-7A. Delete (entry moved to 7AS:4AL:7DS).

Xgwm537-7B. Revise the first column to ‘Xgwm537-7B {9929},{0242}.’ and remove the sentence ‘Whether Xgwm537-7B belongs to the 7S arm group or the 7BS:5BL:5DL arm group is uncertain.’.

Xgwm631-7A. Delete (entry moved to 7L).

Xwg180-7B. Revise the last column to ‘(1A, 4B, 7BL).’.

 

Add:

Xgwm111-7D {9929,0211}.

 

WMS F111/WMS R111.

(4A, 7BL).

Xgwm255-7B {0250}.

 

WMS F255/WMS R255.

 

Xgwm263-7B {0250}.

 

WMS F263/WMS R263.

 

Xgwm890-7A {0254}.

 

WMS F890/WMS R890.

 

Xgwm913-7A {0254}.

 

WMS F913/WMS R913.

 

Xgwm1002-7D {0250}.

 

WMS F1002/WMS R1002.

 

Xgwm1065-7A {0254}.

 

WMS F1065/ WMS R1065.

 

Xgwm1173-7B {0250}.

 

WMS F1173/WMS R1173.

 

Xgwm1184-7B {0250}.

 

WMS F1184/WMS R1184.

 

Xgwm1220-7D {0250}.

 

WMS F1220/WMS R1220.

 

It is not known whether Xwmc1220-7A belongs to group 7S or 7AS:4AL:7DS.

Xsun16-7B {0256},[{0242}].

[XsunM16-7B {0242}].

SUN 16F/SUN 16R.

 

Xutv621-7B {0269}2.

 

UTV621.

 

Xwmc17-7A [{0242}].

[Xwmc017-7A {0242}].

WMC 17F/WMC 17R.

 

It is not known whether Xwmc17-7A belongs to group 7S or 7AS:4AL:7DS.

Xwmc76-7B [{0242}].

[Xwmc076-7B {0242}].

WMC 76F/WMC 76R.

(6B).

Xwmc83-7A {0153},[{0242}].

 

WMC 83F/WMC 83R {0161}.

 

Xwmc283-7A {0242}.

 

WMC 283F/WMC 283R.

 

Xwmc338-7B {0242}.

 

WMC 338F/WMC 338R.

 

It is not known whether Xwmc338-7B belongs to group 7S or 7BS:5BL:5DL.

Xwmc405-7A,D [{0242}].

[Xwmc405a-7A {0242}].

WMC 450F/WMC 405R.

 

 

 

 

 

 

7AS:4AL:7DS

Amendments:

Xabg378-7A. Revise the first column to ‘Xabg378-7A {282}3, 4A [{0242}]1.’ and add ‘[Xabg378b-4A {0242}].’ in the second column.

Xabg704-7A. Revise the first column to ‘Xabg704-7A {282}3, 4A {0242}1, 7D {[0242}]1.’ and add ‘[Xabg704c-7D {0242}].’ in the second column.

Xbcd129-7D. Revise the first column to ‘Xbcd129-7A {0242}, 7D [{1059}] {1057}.’

Xbcd1975-7D. Add '(4A).' in the last column.

Xcdo665-4A. Add ‘(2A).’ in the last column.

Xpsr604-7A,4A,7D. Add ‘(3B).’ in the last column.

Xutv434-4A.2. Revise the last column to '(4AS, 4AL).'.

 

Add:

Xabc465-4A [{0242}].

[Xabc465b-4A {0242}].

ABC465.

(7A,B,D).

Xabg75-7A,D [{0242}].

[Xabg75b-7A, Xabg75a-7D {0242}].

ABG75.

 

Xbcd135-7A, 4A [{0242}].

[Xbcd135a-7A, Xbcd135b-4A {0242}].

BCD135.

(2B,D, 5D).

Xbcd873-7A,D [{0242}].

[Xbcd873a-7A, Xbcd873b-7D {0242}].

BCD873.

(5B,D).

Xfbb194-4A {0242}.

 

FBB194.

(6A).

Xgwm60-7A {724,0250}.

 

WMS F60/WMS R60.

 

Xstm271-7A {0242}.

 

STM 271F/STM 271R.

 

It is not known whether Xstm271-7A belongs to group 7AS:4AL:7DS or 7S.

Xwmc262-4A {0242}.

 

WMC 262F/WMC 262R.

 

Xwmc313-4A {0242}.

 

WMC 313F/WMC 313R.

 

 

 

 

 

 

Group 7L

Amendments:

Xcdo414-7B. Add '(4A).' to the last column.

Xcdo686-7B. Add '(6B).' to the last column.

Xcdo775-7A,B,D. Add '(5B).' to the last column.

Xgwm111-7B,D. Revise the first column to 'Xgwm111-7B [{0031}].' and revise the last column to '(4A, 7DS).'.

Xgwm332-7A. Revise the first column to 'Xgwm332-7A.3 [{9929}].', add '[Xgwm332-7A {9929}].' in the second column and add '(7AS).' to the last column.

XksuA1-7D. Revise the last column to ‘(1B, 2D, 3B, 5B).’.

Xmwg938-7A. Revise the last column to '(1A,B,D).'.

Xpsr311-7A,B,D. Add ‘(3A).’ to the last column.

Xutv1110-7A. Revise the first column to 'Xutv1110-7A {9959}2, 7B {0269}2.'.

Xutv1267-7A. Revise the first column to 'Xutv1267-7A {9959}2, 7B {0269}2.'.

Xwg180-7B.  Revise the last column to ‘(1A, 4B, 7BS).’.

Xwg232-7A. Revise the first column to Xwg232-7A [{154}], 7B [{0242}], add ‘[Xwg232a-7B {0242}]’ in the second column and revise the last column to ‘(1A, 4A,B, 5A,B,D, 6B).’.

Xwg420-7A,D. Revise the first column to ‘Xwg420-7A {282}3, 7B {0242}1,  7D {1059}1.

 

Add:

Xabg652-7A {0242}.

 

ABG652.

(6A).

Xfba349-7A {0242}.

 

FBA349.

(2D).

Xgwm332-7A.1 [{0269}]2.

[Xgwm332a-7A {0269}2].

WMS F332/WMS R332.

(7AL).

Xgwm332-7A.2 [{0269}]2.

[Xgwm332b-7A {0269}2].

WMS F332/WMS R332.

(7AL).

Xgwm631-7A.{0178,0254}.

 

WMS F631/WMS R631.

 

Xgwm698-7A {0254}.

 

WMS F698/WMS R698.

 

Xgwm748-7A {0254}.

 

WMS F748/WMS R748.

 

Xgwm767-7B {0250}.

 

WMS F767/WMS R767.

 

Xgwm870-7A {0254}.

 

WMS F870/WMS R870.

 

Xgwm871-7B {0250}.

 

WMS F871/WMS R871.

 

Xgwm897-7B {0250}.

 

WMS F897/WMS R897.

 

Xgwm963-7B {0250}.

 

WMS F963/WMS R963.

 

Xgwm1044-7D {0250}.

 

WMS F1044/WMS R1044.

 

Xgwm1061-7A {0254}.

 

WMS F1061/WMS R1061.

 

Xgwm1066-7A {0254}.

 

WMS F1066/WMS R1066.

 

Xgwm1085-7B {0250}.

 

WMS F1085/WMS R1085.

 

Xgwm1083-7A {0254}.

 

WMS F1083/WMS R1083.

 

XksuE19-7B {0242}.

 

pTtksuE19.

(1A,B,D, 6D).

Xrz508-7A.1 [{0269}]2.

[Xrz508a-7A {0269}2].

RZ508.

(7AL, 7B).

Xrz508-7A.2 [{0269}]2.

[Xrz508b-7A {0269}2].

RZ508.

(7AL, 7B).

Xutv507-7B {0269}2.

 

UTV507.

 

Xutv1521-7A {0269}2.

 

UTV1521.

 

Xwmc14-7D [{0242}].

[Xwmc014-7D {0242}].

WMC 14F/WMC 14R.

 

Xwmc116-7A {0242}.

 

WMC 116F/WMC 116R.

 

Xwmc157-7D {0242}.

 

WMC 157F/WMC 157R.

 

Xwmc247-7A {0242}.

 

WMC 247F/WMC 247R.

 

Xwmc346-7A {0242}.

 

WMC 346F/WMC 346R.

 

 

 

 

 

 

Group 7

Amendments:

Xbcd410-7D. Revise the last column to ‘(2A,B,D).’.

Xbcd707-7D. Revise the first column to ‘Xbcd707-7B {0242}, 7D {1059}.’.

XksuE7-7D. Add ‘(2B).’ in the last column.

Xmwg539-7D. Add '(1A,B,D).' in the last column.

Xpsp3045-7D. Add '(2A, 5B).' in the last column.

Xwg232-7A.1. Revise the last column to ‘(1A, 4A,B, 5A,B,D, 6B, 7B).’.

Xwg232-7A.2. Revise the last column to ‘(1A, 4A,B, 5A,B,D, 6B, 7B).’.

Xwmc47-7A. Add ‘(4B).’ in the last column.

Xwmc83-7A. Delete (the entry has been moved to group 7S).

 

Add:

Xcdo949-7B {0242}.

 

CDO949.

(4D).

Xstm337-7B [{0242}].

[Xstm337b-7B {0242}].

STM 337F/STM 337R.

(5A).

Xstm764-7A [{0242}].

[Xstm764a-7A {0242}].

STM 764F/STM 764R.

 

Xwmc94-7D {0242}.

[Xwmc094-7D {0242}].

WMC 94F/WMC 94R.

 

Xwmc121-7D {0242}.

 

WMC 121F/WMC 121R.

 

Xwmc364-7B {0242}.

 

WMC 364F/WMC 364R.

 

Xwmc402-7B {0242}.

 

WMC 402F/WMC 402R.

 

 

 

 

 

 

Dormancy (Seed)

Cross AC Domain/Haryutaka: one major QTL in chromosome 4AL and two lesser possibly homoeologous QTLS in 4BL and 4DL {0226}.

 

Ear emergence

QEet.ipk-2D

2DS {0255}.

v:

Opata/W-7984 (ITMI) RI mapping population {0255}.  Lateness was contributed by W-7984 {0255}.

 

ma:

Associated with Xfba400-2D  and Xcdo1379 {0255}.

QEet.ipk-2D coincides with a QTL for flowering time, QFlt.ipk-2D.  Both QTLs are likely to correspond to Ppd-D1 {0255}

QEet.ipk-5D {0255}.

5DL {0255}.

v:

Opata/W-7984 (ITMI) RI mapping population {0255}.  Lateness was contributed by W-7984 {0255}.

 

ma:

Associated with Xbcd450-5D {0255} .

QEet.ipk-5D coincides with a QTL for flowering time, QFlt.ipk-5D.  Both QTLs are likely to correspond to Vrn-D1 {0255}.

 

Flowering time

QFlt.ipk-3A {0255}.

3AL {0255}.

v:

Opata/W-7984 (ITMI) RI mapping population {0255}.  Lateness was contributed by W-7984 {0255}.

 

ma:

Associated with Xbcd451 {0255} .

 

Frost Resistance

Responses to cold exposure and their genetics are reviewed in {0020,0274}.  

 

Fr1.    ma:  Fr1 mapped 2 cM proximal to Xwg644-5A and Vrn-A1 {0291} and was flanked by deletion points 0.67 and 0.68 {0292}.

Fr2 {0291}.  5DL {0291}.  s:  CS*7/Cheyenne 5D  {0291}.    ma:  Fr2 mapped 10 cM proximal to Vrn-D1 {0291}.

 

QWin.ipk-6A

6AS {0255}.

v:

Opata/W-7984 (ITMI) RI mapping population {0255}.  Winter hardiness was contributed by W-7984 {0255}.

 

ma:

Associated with Xfba85 and Xpsr10(Gli-2) {0255}.

 

Glume Colour

1.             Red (brown/bronze)

Rg2.

QRg.ipk-1D {0255}.

1DS {0255}.

v:

Opata/W-7984 (ITMI) RI mapping population {0255}.  The glume colour was contributed by  W-7984 {0255}.

 

ma:

Associated with Gli-D1 {0255}.

This QTL coincides with a QTL for awn colour, QRaw.ipk-1D {0255}.

 

7.             Awn colour

QRaw.ipk-1A {0255}.

1AS {0255}.

v:

Opata/W-7984 (ITMI) RI mapping population {0255}.  The awn colour was contributed by  W-7984 {0255}.

 

ma:

Associated with Gli-A1 {0255}.

QRaw.ipk-1D {0255}.

1DS {0255}.

v:

Opata/W-7984 (ITMI) RI mapping population {0255}.  The awn colour was contributed by  W-7984 {0255}.

 

ma:

Associated with Gli-D1 {0255}.

 

Grain Hardness / Endosperm Texture

Add at end of section:

QTL : 

Ten QTLs for kernel hardness (54 % of the variation) were mapped in a cross 'Forno'/ 'Oberkulmer' spelt {0280}.

 

Grain Quality Parameters

1.             Sedimentation value

QTL : 

QTL associated with Glu-1on chromosome arms 1AL and 1DL and Gli-1/Glu-3 on 1BS were detected in RSLs from the cross Cheyenne (high quality) x CS (low quality) {0251}.  Cultivar Cheyenne contributed the higher SDS sedimentation values {0251}.  The QTL on 1AL coincided with a QTL for bread loaf volume {0251}.  The QTL on 1DL and 1BS coincided with QTL for bread mixing time {0251}.

 

4.             Milling yield

QTL : 

A QTL associated with Pinb on chromosome arm 5DS was detected in RILs from the cross NY6432-18 x Clark’s Cream {0241}.  Cultivar Clark’s Cream contributed the higher flour yield allele {0241}.  This QTL coincided with QTL for hardness, hydration traits (dough water absorption, damaged starch and alkaline water retention capacity (AWRC), and baked product traits (cookie diameter and cookie top grain) {0241}.

 

 5.            Alveograph dough strength W

Add at the end of section:

QTL : 

Ten QTLs for W (39 % of the variation), nine QTLs for P (48% of the variation) and seven QTLs for P:L (38% of the variation) were mapped in 'Forno'/'Oberkulmer' spelt {0280}.

 

6.             Mixograph peak time (new category)

QTL : 

A QTL associated with Glu-Dy1 on chromosome arm 1DL was detected in RILs from the cross NY6432-18 x Clark’s Cream {0241}.  Cultivar Clark’s Cream contributed the higher mixograph peak time allele {0241}.  This QTL coincided with a QTL for bread mixing time {0241}. 

 

Height

Reduced Height

Rht-B1.      Add at end of section: The line XN004, earlier considered to have Rht21 {0230}, was shown to carry an allele at the Rht-B1 locus {0231}.

 

Rht-D1.      Add at end of section: The line XN004, earlier considered to have Rht21 {0230}, was shown to carry an allele at the Rht-D1 locus {0231}.

 

Various common wheat and durum NIL pairs differing at the Rht-A1 or Rht-D1 loci are listed in {02102}.

 

Rht8a.  Integrate alphabetically in the v: section:

Hope {0243}; Marquis {0243}; Michigan Amber {0243}.

 

Rht8b. Integrate alphabetically in the v: section:

Arthur {0243}; Carsten V {0243}; Diakovchanka {0243}; Odom {0243}; Oasis {0243}; Purdue Abe {0243}; Salzmόnder Bartweizen 14/44 {0243}; Tp114/65 {0243}; Wiskonsin 245 C/11226 {0243};  

 

Rht8c Integrate alphabetically in the v: section:

Al'batros odesskii {0243}; Arthur 71 {0243}; Donskaya polukarlikovaya {0243}; Erythrospermum 127 {0243}; Erythrospermum 1072 {0243}; Erythrospermum 272-87 {0243}; Erythrospermum 949-38 {0243}; Fakir {0243}; Fedorovka {0243}; Kaloyan {0243}; Khar'kovskaya 50 {0243}; Khar'kovskaya 93 {0243}; Khersonskaya 86 {0243}; Mv 03-89 {0243}; Mv 06-88 {0243}; Mv 17{0243}; Obrii {0243}; Odesskaya 51 {0243}; Odesskaya 117 {0243}; Odesskaya 132 {0243}; Odesskaya krasnokolosaya {0243}; Odesskaya polukarlikovaya {0243}; Roazon {0243}; Simvol odesskii {0243}; Sivka {0243}; Strumok {0243; Tira {0243}; Ukrainka odesskaya {0243}; Vympel {0243}; Yubileinaya 75 {0243}; Zolotava {0243}.

 

At the end of the list {1999 Suppl.} add: ‘Although CS carries a 192 bp fragment, sequencing showed it was a different allele than other genotypes with Rht8c {02103}.’.

 

Rht8g. Associated with a 196-bp fragment of WMS 261 [{0243}]. v: Mirleben {0243}.

 

Rht8h. Associated with a 206-bp fragment of WMS 261 [{0243}]. v: Weihenstephan M1 {0243}.

 

Rht21 {0230}. 

2DL {0230}. 

v:

XN004  {0230}.

The existence of this gene could not be confirmed {0231}.

 

QHt.ipk-4A {0255}.

4AL {0255}.

v:

Opata/W-7984 (ITMI) RI mapping population {0255}.  The height is contributed by Opata {0255}.

 

ma:

Associated with Xmwg549, Xabg390 and Xbcd1670 {0255}.

QHt.ipk-4A coincides with QTLs for ear length (QEl.ipk-4A), grain number (QGnu.ipk-4A) and grain weight per ear (QGwe.ipk-4A) {0255}.

QHt.ipk-6A {0255}.

6A {0255}.

v:

Opata/W-7984 (ITMI) RI mapping population {0255}.  The height is contributed by W-7984 {0255}.

 

ma:

Associated with Xcdo29 and Xfba234 {0255}.

QHt.ipk-6A coincides with QTLs for peduncle length (QPdl.ipk-6A) and ear length (QEl.ipk-6A) {0255}

 

Leaf erectness (new category)

QLer.ipk-2A {0255}.

2AS {0255}.

v:

Opata/W-7984 (ITMI) RI mapping population {0255}.  The erect leave phenotype was contributed by  Opata {0255}.

 

ma:

Associated with Xbcd348 {0255}.

Note: Mutants lacking ligules are known to have erect leaves.  However, the QTL for leaf erectness reported here is not related to liguleless mutants {0255}.

 

Male Sterility

ms1d {0290}.

 

v:

Mutant FS2 {0290}.

 

ms1e {0290}.   

 

v:

Mutant FS3 {0290}.

 

ms1f {0290}.   

 

v:

Mutant FS24 {0290}.

 

ms3.

ma: 

Xwg341-5A – 0.8cM – ms3……..cent {0289}.  Xcdo-677-5A and Xbcd1130-5A also cosegregated with Xwg341-5A but were located in a different region in the physical map {0289}.

 

ms4 {0293}.   

4DS {0293}.   

v:

Konzak’s male sterile.

 

 

Dominant allele for sterility, distinguished from ms2 on the basis of different degrees of recombination with the 4D centromere.

 

ms5 {0290}.

3A {0290}.   

v:

Mutant FS20 {0290}.  

 

 

 

 

Meiotic Characters

2. Pairing homoeologous

Ph1.

On a new line following the ph1c entry add: ‘Several ph1 mutants are described in {0219}.’.

 

                    ma:  Add:  PCR-based assays for presence and absence of Ph1 have been described {0214,0217,9965}. The Ph1 factor(s) was restricted to a region flanked by Xrgc846-5B and Xpsr150-5B {0219}.

 

Nucleolus Organiser Regions

Add at the end of descriptive paragraph and before allele descriptions:

‘Deletion mapping divided the Nor-B1 in a proximal subregion Nor-B1p (short repeat) and a distal subregion Nor-B1d (long repeat) {0275}’.

 

Proteins

1.             Grain protein content

QTL:  Nine QTLs (51 % of the variation) were mapped in cross 'Forno'/ 'Oberkulmer' spelt {0280}.

 

QGpc.ndsu-6Bb. Add at the end of the ma: section: {0244} reports the location of this QTL in the 4 cM interval flanked by Xmwg79-6B and Xcdo365-6B.

 

QTL:

A QTL for grain and flour protein content, contributed by CS, was associated with XTri-1D/Centromere in a RSL population from the cross Cheyenne (high quality wheat) x CS (low quality wheat) {0251}. 

 

 

3.             Endosperm Storage Proteins

3.1 Glutenins

Glu-A1

Add:

Glu-A1u [{02106}].

2*B {02106}.

v : 

Bαnkϊti 1201.

 

At the end of the Glu-A1 section, just before the entry for the Glu-B1 locus, add the paragraph:

‘The allele designated Glu-A1u above and Glu-A1-1u in the appropriate list below encodes a high molecular weight glutenin subunit (denominated 2*B) that is identical to subunit 2* apart from one amino acid difference involving the exchange of serine for cysteine (which itself is due to a C to G point mutation at the 1181 bp point of the coding region of 2*). The authors of {02106} suggest that the additional cysteine residue facilitates the formation of further disulphide bonds (cf. the 1Dx5 subunit) which might lead to an improvement in gluten quality characters.’

 

Glu-D1

Add:                                                                      

Glu-D1al [{02107}].               

2.2* {02107}.

v : 

MG315.

 

At the end of the Glu-D1 section, just before the entry for the Glu-1-1 and Glu-1-2, add the paragraphs:

‘The subunit 2.2* encoded by Glu-D1al above and Glu-D1-1m in the appropriate list below has an unusually high Mr; comparison of its N-terminal sequence and amino acid composition with those of subunit 2 (encoded by Glu-D1-1a) indicates that its greater Mr could be due to the presence of a larger central repetitive domain, although further evidence suggests that this does not affect the conformational properties of the subunit {02107}.

 

The alleles designated Glu-D1w (encoding ‘subunits’ 2 (or 2t denoting its origin in the T. tauschii genome) +T1+T2), Glu-D1ae (encoding 2.1 (or 2.1t)+T1+T2), Glu-D1af (encoding 3 (or 3t)+T1+T2) and Glu-D1ag (encoding 1.5 (or 1.5t)+T1+T2) share the component T1 that was originally classified as a HMW glutenin. However, it has since been shown {02108} that this protein is soluble in aqueous ethanol, casting doubt upon this classification. More recently, it has been shown {02109}, from one and two dimensional gel electrophoresis based upon SDS-PAGE and A-PAGE, and from N-terminal sequencing, that this protein is an ω-gliadin of unusually low electrophoretic mobility in SDS-PAGE, encoded by a locus located on the short arm of chromosome 1D, though distant (13.18 cM) from the principal gliadin encoding locus on 1D, Gli-D1, and 40.20 cM from the high molecular weight encoding locus, Glu-D1. The authors named the locus Gli-DT1 (see below, section ‘3.2 Gliadins’).’

 

Glu-A1-1

Add:

Glu-A1-1u [{02106}].               

2*B {02106}.

v : 

Bαnkϊti 1201.

 

Glu-D1-1

Add:

Glu-D1-1m [{02107}].

2.2* {02107}.

v : 

MG315.

 

Just before the entry for Glu-E3, add the following phrase to the previous paragraph (which, following the amendments made in the 2000 Supplement, reads: ‘In {00111}, in a study of bread and durum wheats from Portugal, the authors used the nomenclature system described in {00113} for the LMW subunits in bread wheat, and that described in {00114} for the LMW subunits in durum wheat.’): ‘The latter system, updated according to {02110}, is reproduced here:

 

Follow this with the following new entries:

Glu-B2  

Add:                                                                      

Glu-B2a {00114}.

12 {00114}.

v:

Mexicali, T. durum.

Glu-B2b {00114}.

Null {00114}.

v:

Langdon, T. durum.

 

Add at the end of the sentence 'The Glu-3 loci are defined as the cluster of LMW glutenin genes previously considered a component of the compound Gli-1 loci.'

'More than 30 LMW glutenin complete genes, partial genes or pseudogenes have been sequenced from Triticum species (reviewed in {0245}).

 

Glu-A3

Add:

Glu-A3a {00114}.

6 {00114}.

v:

Mexicali, T. durum.

Glu-A3b {00114}.

5 {00114}.

v:

Langdon, T. durum.

Glu-A3c {00114}.

6+10 {00114}.

v:

Cocorit, T. durum.

Glu-A3d {00114}.

6+11 {00114}.

v:

Alaga, T. durum.

Glu-A3e {00114}.

11 {00114}.

v:

Blatfort, T. durum.

Glu-A3f {00114}.

6+11+20 {00114}.

v:

Clarofino, T. durum.

Glu-A3g {00114}.

6+10+20 {00114}.

v:

Claro de Balazote, T. durum.

Glu-A3h {00114}.

null {00114}.

v:

Jiloca, T. durum.

Glu-A3i {02110}.

8*+11 {02110}.

v:

Mourisco Fino, T. durum.

 

Glu-B3

Add:

Glu-B3a {00114}.

2+4+15+19 {00114}.

v:

Mexicali, T. durum.

Glu-B3b {00114}.

8+9+13+16 {00114}.

v:

Langdon, T. durum.

Glu-B3c {00114}.

2+4+14+15+19 {00114}.

v:

Jiloca, T. durum.

Glu-B3d {00114}.

2+4+15+17+19 {00114}.

v:

Mundial, T. durum.

Glu-B3e {00114}.

2+4+15+16+18 {00114}.

v:

Granja Badajoz, T. durum.

Glu-B3f {00114}.

2+4+15+17 {00114}.

v:

Ardente, T. durum.

Glu-B3g {00114}.

2+4+15+16 {00114}.

v:

Claro de Balazote, T. durum.

Glu-B3h {00114}.

1+3+14+18 {00114}.

v:

Alaga, T. durum.

Glu-B3i {00114}.

7+8+14+18 {00114}.

v:

Blatfort, T. durum.

Glu-B3j {02110}.

4+6*+15+19 {02110}.

v:

Mourisco Fino, T. durum.

Glu-B3k {02110}.

8+9+13+16+19 {02110}.

v:

Faνsca, T. durum.

 

At end of the Glutenins section, just before the heading ‘3.2 Gliadins’, add the paragraph:

‘The following loci, Glu-D4 and Glu-D5, encoding low molecular weight subunits of glutenin (30-32 kDa) have been described in {02111}; the proteins encoded by them were first observed earlier {02114, 02115}, and the former was later tentatively assigned the symbol Glu-4 {02116}, before its chromosomal location was established and the locus definitively named as Glu-D4 in {02111}.  While this locus is located on chromosome 1D (in accordance with the position on the group 1 chromosomes of the remaining glutenin encoding loci found to date), the locus Glu-D5 is located on chromosome 7D.  In SDS-PAGE, the proteins from both loci are detected only in the presence of 4-vinylpyridine added to the sample extract.  Their amino acid composition does not match that of the major prolamin groups;  nonetheless, they classify as glutenins based upon solubility, immunological behaviour and N-terminal amino acid sequence (the latter suggesting an evolutionary link with the major (B and C) low molecular weight glutenin subunits).'

 

Then add the following entries:        

Glu-D4 {02111}.

1D {02111}.

su:

CS/Langdon 1D(1A); CS/Langdon 1D(1B) {02111}.

 

Glu-D4a {02111}.

 

v:

J 24.

 

Glu-D4b {02111}.

 

v:

PBW 154.

 

Glu-D4c {02111}.

null allele.

v:

NI 4.

 

Glu-D5 {02111}.

7D {02111}.

su:

CS/Langdon 7D(7A); CS/Langdon 7D(7B) {02111}.

 

Glu-D5a {02111}.

 

v:

PBW 154.

 

Glu-D5b {02111}.

null allele

v:

K 68.

 

Continue with the following paragraph:

‘A collection of 173 Triticum tauschii accessions have been analysed for low molecular weight glutenin subunits by SDS-PAGE {02112}. 33 different patterns for B-subunits and 43 for C-subunits were identified, some of which were of identical electrophoretic mobility to those observed in bread wheat. Also observed were subunits with the same mobilities as the D-subunits and as the subunits encoded by the Glu-D4 and Glu-D5 loci. This variation represents a source of novel germplasm of potential value for breeding programmes aimed at improving the D-genome of bread wheat in the context of bread-making quality.’

 

3.2. Gliadins

Add at the end of the section, just before the heading ‘3.3 Other endosperm storage proteins’, add the paragraph:

'A locus designated Gli-DT1 controlling an ω-gliadin of T. tauschii has been mapped on the short arm of chromosome 1D between loci Gli-D1 (strictly Gli-Dt1) and Glu-D1 (strictly Glu-Dt1), 13.18 cM proximal to the former and 40.20 cM from the latter {02109}. The only ω-gliadin to date identified as being encoded by this locus, namely T1, is of unusually low electrophoretic mobility in SDS-PAGE gels and was formally thought to be a high molecular weight glutenin encoded by the Glu-Dt1 locus of T. tauschii (see note following the Glu-D1 list in section ‘3.1 Glutenins’). The authors speculate that, due to their similar relative map positions, the loci Gli-A4, Gli-D4, Gli-R3, Gli-Sl4 and this locus, Gli-DT1, form a series of ‘Gli-4’ orthologous loci. However, this should be interpreted in the light of the above discussion on Gli-A3 and Gli-A4

 

Then add the entry:

Gli-DT1 {02109}.

1DS {02109}.        

dv:

AUS18913 T. tauschii; L/18913 (synthetic 6X).

 

Gli-DT1a [{02109}].

T1.

dv:

AUS18913 T. tauschii; L/18913 (synthetic 6X).

                                               

Follow this entry with the following paragraph:

‘Four new classes of low molecular weight proteins related to gliadins, though not sufficiently similar to be classified as such, have been reported in {02113}. One of the classes has no close association to previously described wheat endosperm proteins.’

 

5.             Other proteins

5.6 Waxy proteins

At end of preamble add: 'Partial genomic clones of various diploid, tetraploid, and hexaploid wheats have been sequenced {0278,0279}.'

 

Wx-d1e {0234}.        v:  Tanikei A6599-4 {0234}.  Relative to Kanto 107, Tanikei A6599-4 carries an alanine to threonine substitution at position 258 in the mature protein {0234}.

 

5.8. Puroindolines

Revised section: Puroindolines a and b are the major components of friabilin, a protein complex that is associated with grain texture (see 'Grain Hardness'). Hard wheats result from unique changes in the puroindoline amino acid sequence or, currently, four null forms {0295} of the completely linked genes (max. map distance 4.3 cM) {452}.

 

Pina-Am1 {0083} 5AmS {0083}.                                                                         dv: T. monococcum DV92, G3116 {0083}

In T. momococcum Pina-Am1 is completely linked to Gsp-Am1 {0083}.

Pina-D1 5DS {452}.                                             v:  CS

Pina-D1a {452}.                                                                                                 

v: Aurelio Pinb-D1a {0249}; Bellevue {0249}; Bezostaja Pinb-D1b {0249}; Bilancia Pinb-D1a {0249}; Bolero Pinb-D1a {0249}; Brasilia Pinb-D1b {0249}; Centauro Pinb-D1a {0249}; Cerere Pinb-D1b {0249}; Chinese Spring Pinb-D1a {452,0249}; Colfiorito Pinb-D1b {0249}; Cologna 21 Pinb-D1b {0249}; Courtot {0249}; David Pinb-D1b {0249}; Democrat Pinb-D1b {0249}; Etruria Pinb-D1b {0249}; Fortuna {0249}; Francia Pinb-D1b {0249}; Galaxie 0249}; Gemini Pinb-D1b {0249}; Genio Pinb-D1b {0249}; Gladio Pinb-D1b {0249}; Heron {1035}; Lampo Pinb-D1a {0249}; Leone Pinb-D1a {0249}; Leopardo Pinb-D1a {0249}; Libero Pinb-D1a {0249}; Livio Pinb-D1a {0249}; Marberg Pinb-D1b {0249}; Mentana Pinb-D1a {0249}; Mieti Pinb-D1b {0249}; Mosθ Pinb-D1a {0249}; Neviana Pinb-D1a {0249}; Newana Pinb-D1b {0249}; Oscar Pinb-D1a {0249}; Pandas Pinb-D1b {0249}; Pascal Pinb-D1b {0249}; Sagittario Pinb-D1b {0249}; Salgemma Pinb-D1b {0249}; Saliente Pinb-D1b {0249}; Salmone Pinb-D1b {0249}; Serena Pinb-D1a {0249}; Serio Pinb-D1b {0249}; Soissons {0249}; Veda Pinb-D1b {0249}; Zena Pinb-D1b {0249}.'

Pina-D1a is present in all soft hexaploid wheats and possibly all hard hexaploid wheats

carrying a hardness mutation in puroindoline b {452,1035,0082, 0204}.

Pina-D1b {1035}.                                                Null allele

v: Amidon Pinb-D1a {0249}; Barra Pinb-D1a {0249}; Butte 86 {1035}; Ciano Pinb-D1a {0249}; Dorico Pinb-D1a {0249}; Eridano {0249}; Falcon {1035}; Fortuna (USA) Pinb-D1a {0249}; Glenman Pinb-D1a {0249}; Golia Pinb-D1a {0249}; Guadalupe Pinb-D1a {0249}; Inia 66 Pinb-D1a {0249}; Jecora Pinb-D1a {0249}; Indice Pinb-D1a {0249}; Kalyansona {0249}; Manital Pinb-D1a {0249}; Mendos Pinb-D1a {0249}; Padus Pinb-D1a {0249}; Prinqual Pinb-D1a {0249}; Sibilia Pinb-D1a {0249}; Super X {0249}; Yecora Rojo {0204}.

                i: Gamenya sel. {0298,0203}; Heron/7*Falcon sel.{0298,0203}.

                       

Present only in some hard hexaploid wheats.  Pina-D1b is associated with harder texture than Pinb-D1b {0177,0206}.

Pinb-Am1 {0083}.m                                              5AmS {0083}.                        dv: T. monococcum DV92, G3116 {0083}.

In T. momococccum Pinb-Am1 is 0.1 cM proximal to Pina-Am1 and both loci are less than 36 kb apart.

Pinb-D1 5DS {452}                                              v:  CS.

Pinb-D1a {452}.                                                                                                 

v: Amidon Pina-D1b {0249}; Aurelio Pina-D1a {0249}; Barra Pina-D1b {0249}; Bilancia Pina-D1a {0249}; Bolero Pina-D1a {0249}; Centauro Pina-D1a {0249}; Chinese Spring Pina-D1a {452,0249}; Ciano Pina-D1b {0249}; Dorico Pina-D1b {0249}; Fortuna (USA) Pina-D1b {0249}; Glenman Pina-D1b {0249}; Golia Pina-D1b {0249}; Guadalupe Pina-D1b {0249}; Hill 81 {452}; Inia 66 Pina-D1b {0249}; Jecora Pina-D1b {0249}; Idice Pina-D1b {0249}; Lampo Pina-D1a {0249}; Leone Pina-D1a {0249}; Leopardo Pina-D1a {0249}; Libero Pina-D1a {0249}; Livio Pina-D1a {0249}; Manital Pina-D1b {0249}; Mendos Pina-D1b {0249}; Mentana Pina-D1a {0249};Mosθ Pina-D1a {0249}; Neviano Pina-D1a {0249}; Oscar Pina-D1a {0249}; Padus Pina-D1b {0249}; Prinqual Pina-D1b {0249}; Serena Pina-D1a {0249}; Sibilia Pina-D1b {0249}.

Pinb-D1a is present in all soft hexaploid wheats and possibly all hard hexaploid wheats

carrying the Pina-D1b mutation {452,1035,0082,0204}.

 

Pinb-D1b {452}.                                                  5DS {452}.                            

i: Paha*2//Early Blackhull/5*Paha {02111,0203}; Early Blackhull der./5*Nugaines sel. {0298,0203}.

s:  CS*7/Cheyenne 5D {452}.

v: Bezostaya Pina-D1a {0249};  Brasilia Pina-D1a {0249}; Cerere Pina-D1a {0249}; Colfiorito Pina-D1a {0249}; Cologna 21 Pina-D1a {0249}; David Pina-D1a {0249}; Democrat Pina-D1a {0249}; Etruria Pina-D1a {0249}; Francia Pina-D1a {0249}; Gemini Pina-D1a {0249}; Genio Pina-D1a {0249}; Gladio Pina-D1a {0249}; Marberg Pina-D1a {0249}; Mieti Pina-D1a {0249}; Newana Pina-D1a {0249}; Pandas Pina-D1a {0249}; Pascal Pina-D1a {0249}; Sagittario Pina-D1a {0249}; Salgemma Pina-D1a {0249}; Saliente Pina-D1a {0249}; Salmone Pina-D1a {0249}; Serio Pina-D1a {0249}; Thatcher {0204}; Veda Pina-D1a {0249}; Wanser {452}; Zena Pina-D1a {0249}; hard component of Turkey {0204}.

 

Pinb-D1b is a "loss-of-function" mutation resulting from the replacement of a glycine by a serine at position 46 {452}.

Pinb-D1c {0082}                                                  v: Avle {0082}; Reno {0082}; Tjalve {0082}; Bjorke {0082}; Portal {0082}.

Pinb-D1c is a  "loss-of-function" mutation resulting from the replacement of a leucine by a proline at position 60 {0082}.

Pinb-D1d {0082}.                                                v: Bercy {0082}; Mjolner {0082}.

Pinb-D1d is a  "loss-of-function" mutation resulting from the replacement of a tryptophan by a arginine at position 44 {0082}.

Pinb-D1e {0204}.                                                 v: Gehun {0204}; Canadian Red {0204}; Chiefkan

                                                                                {0204}.

Pinb-D1e is a  "loss-of-function" mutation resulting from the replacement of a tryptophan by a stop codon at position 39 {0204}.

Pinb-D1f {0204}.                                                 v: the hard component of Utac {0204}.

Pinb-D1f is a  "loss-of-function" mutation resulting from the replacement of a tryptophan by a stop codon at position 44 {0204}.

Pinb-D1g {0204}.                                                v: Andrews {0204}.

Pinb-D1g is a  "loss-of-function" mutation resulting from the replacement of a cysteine by a stop codon at position 56 {0204}.

 

Pinb-D1b, Pinb-D1c, Pinb-D1d, Pinb-D1e, Pinb-D1f, or Pinb-D1g are present in hard hexaploid wheats not carrying the Pina-D1b (null) mutation {452,1035,0082,0204}.

 

Wheats with Pinb-D1b were slightly softer and a little superior to those with Pina-D1b in milling and bread-making characteristics although there was considerable overlap {0206}. Transgenic rice with the Pina-D1a and Pinb-D1a alleles possessed softer grain {0207}.

                Genotypes for a selection of North American wheats are given in {0204}.

 

5.9. Histone H1 Proteins

HstH1-A1 {0215}.

 

5AL {0215}.

v:

CS {0215}.

 

 

 

 

 

HstH1-B1 {0215}.

 

5BL {0215}.

v:

CS {0215}.

 

 

 

 

 

HstH1-D1 {0215}.

 

5DL {0215}.

v:

CS {0215}.

 

HstH1-D1a {0215}.

 

v:

CS {0215}; 18 others {0215}.

 

HstH1-D1b {0215}.

 

v:

Grekum 114 {0215}; Kirgizsky Karlik {0215}.

 

 

 

 

 

HstH1-A2 {0215}.

 

5AL {0215}.

v:

CS {0215}.

 

 

HstH1-A2a {0215}.

 

v:

CS {0215}.

 

HstH1-A2b {0215}.

Null allele {0215}.

v:

Mara {0215}; 10 others {0215}.

 

 

 

 

 

HstH1-B2 {0215}.

 

5BL {0215}.

v:

CS {0215}.

 

HstH1-B2a {0215}.

 

v:

CS {0215}; 19 others {0215}.

 

HstH1-B2b {0215}.

 

v:

Excelsior {0215}.

 

 

 

 

 

HstH1-D2 {0215}.

 

5DL {0215}.

v:

CS {0215].

 

The relationship of this gene series with a Hst-A1, Hst-B1, Hst-D1 series in group 5 chromosomes {0216} based on DNA hybridization studies was not established.

 

Response to Tissue Culture

Add at the end of the section:

QGpp.kvl-2A {0253}.

2AL {0253}.

v:

Ciano/Walter DH mapping population {0253}.  The green plant percentage was contributed by Ciano {0253}.

 

ma:

Associated with Xpsp3045-2A {0253}.

QGpp.kvl-2B.1 {0253}.

2BL {0253}.

v:

Ciano/Walter DH mapping population {0253}.  The green plant percentage was contributed by Ciano {0253}.

 

ma:

Associated with Xgwm388-2B {0253}.

QGpp.kvl-2B.2 {0253}.

2BL {0253}.

v:

Ciano/Walter DH mapping population {0253}.  The green plant percentage was contributed by Ciano {0253}.

 

ma:

Associated with AFLP markers {0253}.

QGpp.kvl-2A {0253}.

2AL {0253}.

v:

Ciano/Walter DH mapping population {0253}.  The green plant percentage was contributed by Ciano {0253}.

 

ma:

Associated with Xpsp3045-2A {0253}.

 

Response to Vernalization

Vrn-B1.     Vrn2.    5BL or 7BL. Add to reference {635}, i.e. {635,0282}.

 

In the final paragraph include reference 0202 with the first reference, i.e. {1173,0202}.

 

Yellow berry tolerance

QTL : 

A QTL for yellow berry tolerance, contributed by RS111, was associated with Xgwm190 and Xgwm174 on chromosome 5D in a RIL population from RS111/CS {0237}.  A tolerance QTL contributed by CS, the susceptible parent, was detected on 6B {0237}.

 

Yield Components

1000-grain weight

QTgw.ipk-5A {0255}.

5AL {0255}.

v:

Opata/W-7984 (ITMI) RI mapping population {0255}.  The higher yielding allele is contributed by W-7984 {0255}.

 

 

ma:

Associated with Xfba351 and Xcdo1312 {0255}.

 

QTL : 

QTLs for grain size were identified on chromosome arms 1DS, 2DL and 6BL in a RIL population from RS111/CS {0236}.

QTL

Eight QTLs for 1,000-kernel weight (54 % of the variation) were mapped in 'Forno'/ 'Oberkulmer' spelt {0280}.

 

Kernel number per spike 

QGnu.ipk-4A {0255}.

4AL {0255}.

v:

Opata/W-7984 (ITMI) RI mapping population {0255}.  Higher kernel number was contributed by Opata {0255}.

 

ma:

Associated with Xmwg549, Xabg390 and Xbcd1670 {0255}.

QGnu.ipk-4A coincides with QTL for height (QHt.ipk-4A), spike length (XEl.ipk-4A) and grain weight per ear (QGwe.ipk-4A) {0255}.

 

Spike length

QEl.ipk-1B {0255}.

1BL {0255}.

v:

Opata/W-7984 (ITMI) RI mapping population {0255}.  Longer ear was contributed by Opata {0255}.

 

ma:

Associated with Xbcd388 and Xwg605 {0255} .

QEl.ipk-4A {0255}.

4AL {0255}.

v:

Opata/W-7984 (ITMI) RI mapping population {0255}.  Longer ear was contributed by Opata {0255}.

 

ma:

Associated with Xmwg549, Xabg390 and Xbcd1670 {0255}.

This QTL is likely to be a pleiotropic effect of the gene underlying the height QTL, QHt.ipk-4A {0255}.

QEl.ipk-5A {0255}.

5AL {0255}.

v:

Opata/W-7984 (ITMI) RI mapping population {0255}.  Longer ear was contributed by W-7984 {0255}.

 

ma:

Associated with Xmwg522 {0255}.

 

Grain weight/ear

QGwe.ipk-2D {0255}.

2DS {0255}.

v:

Opata/W-7984 (ITMI) RI mapping population {0255}.  Higher grain weight was contributed by Opata {0255}.

 

ma:

Associated with Xcdo1379 and Xbcd1970 {0255} .

QGwe.ipk-4A {0255}.

4AL {0255}.

v:

Opata/W-7984 (ITMI) RI mapping population {0255}.  Higher grain weight was contributed by Opata {0255}.

 

ma:

Associated with Xmwg549, Xabg390 and Xbcd1670 {0255}.

QGwe.ipk-4A coincides with QTL for height (QHt.ipk-4A), spike length (XEl.ipk-4A) and grain number (QGnu.ipk-4A) {0255}.

 

 

 

Reaction to Diseases and Pests

 

Reaction to Barley Yellow Dwarf Virus

Bdv2. 

 

tr:

TC14 {059,0201}.

 

 

v: 

TC14*2/Hartog {0225}; TC14/2*Spear {0201}; TC14/2*Tatiara {0225}.

 

ma:

Complete association with Xpsr129-7D, Xpsr548-7D, XksuD2-7D, XcslH81-7D, and Xgwm37-7D selected as a diagnostic marker {0225}.

 

Reaction to Diuaphis noxia

Dn1.

7DS {0211}.

i: 

Betta-Dn1 {0211}; Karee-Dn1 {0211}; Tugela-Dn1 {0211}.   

 

ma:

Xgwm111-7D210  - 3.20 ± 0.20 cM - Dn1 (0211}.

 

Dn2.

7DS {0211}.

i:  

Betta-Dn2 (0211}; Karee-Dn2 {0211}; Tugela-Dn2 {0211}.

 

ma:

Xgwm111-7D200 – 3.05 ± 0.18 cM - Dn2 {0211}.

 

Dn4.

 

v: 

Halt {0209}.

 

Dn5.

7DS {0211}.

i: 

Betta-Dn1 {0211}.

 

ma: 

Xgwm111-7D220 - <3.20 cM – Dn5 {0211}.

 

Dn8 {0211}.

7DS {0211}.

i: 

Karee-Dn8.

 

 

v: 

PI 294994 Dn5Dn9 {0211}.

 

ma: 

Xgwm635-7D100 - <3.20 cM – Dn8 {0211}.

 

Dn9 {0211}.

1DL {0211}.

i: 

Betta-Dn9.

 

 

v:

PI 294994 Dn5Dn8 {0211}.

 

ma:

Xgwm642-7D180 - <3.20 cM -  Dn9 {0211}.

 

Dnx {0211}.

7DS {0211}.

v: 

PI 220127 {0211}.

 

ma: 

Xgwm111-7D210 – 1.52 + 0.15 cM – Dnx {0211].

Dnx was considered to be located at a locus different from Dn1, Dn2 or Dn5 {0211}, which were likely to be identical or allelic.

 

Reaction to Erysiphe  graminis

Pm4b.

ma:

Pm4b - 4.8cM - Xgbx3119b  {0272}.

 

Pm5a {0257}.

Pm5{787}.

v:

Add:  'Galaxie {0257}; Kutulukskaya {0257}; Lambros {0257}; Navid {0257}; Pagode {0257}; Regina {0257}; Sicco (0257}; Tarasque {0257}; Zolotistaya {0257}.'

Pm5b {0257}.

Mli {540,558}.

v:

Add:  Cucurova {0257}; Fruhprobst {0257}; Kirkpinar-79 {0257}; Kontrast {0257}; Ilona {0257}; Nadadores {0257}; Siete Cerros {0257}; Una {0257}; Wettiness {0257};

Pm5c {0257}.

7B {0257}.

v:

T. sphaerococcum cv. Kolandi {0257}.

Pm5d {0257}.

7B {0257}.

i:

IGV 1-455 = CI 10904/7*Prins {0257}; CI 10904/7*Starke {0257}.

Pm5e {0258}.

mlfz {0259}.

v:

Fuzhuang 30 {0258}.

 

ma:

Xgwm1267-7B - 6.6cM – Pm5e – 12.6cM - Xubc405628 {0258}.

 

Pm8.

ma:

A STS marker distinguishes Pm17 from Pm8 {0286}.

 

Pm17.

1BL.1RS.   

 

 

 

ma:

A STS marker distinguishes Pm17 from Pm8 {0286}.

 

Pm30.

ma:

Pm30 – 5.6 cM – Xgwm159-5B {0163}.

 

Mlxbd {0259}.

7B {0259}.

v:

Xiaobaidong {0258}.

 

Add to genotype list:  ‘{02104} (Hungarian wheats).’.

 

QTL: 

Several QTLs were detected in two RE714/Hardi populations when tested at two growth stages and with different cultures over three years.  The most persistent band effective QTL was located in the vicinity of Xgwm174-5D {0272}.  Three QTLs, QPm.vt-1B, QPm.vt-2A and QPm.vt-2B, with additive gene action, accounted for 50% of the variation in a population developed from Becker/Massey {0284}.

  

 

QPm.ipk-2B {0255}.

2BS {0255}.

v:

Opata/W-7984 (ITMI) RI mapping population {0255}.  Resistance was contributed by Opata {0255}.

 

ma:

Associated with Xcdo405 and Xmwg950 {0255} .

 

QPm.ipk-4B {0255}.

4B {0255}.

v:

Opata/W-7984 (ITMI) RI mapping population {0255}.  Resistance was contributed by W-7984 {0255}.

 

ma:

Associated with Xcdo795 and Xbcd1262 {0255}.

QPm.ipk-7D {0255}.

7DS {0255}.

v:

Opata/W-7984 (ITMI) RI mapping population {0255}.  Resistance was contributed by Opata {0255}.

 

ma:

Associated with Xwg834 and Xbcd1872 {0255} .

 

 

Reaction to Fusarium graminearum

QFhs.ndsu-3B {9925,0175}.

3BS {9925}.

v:

Sumai 3 {9925,0175}.

 

ma:

Associated with Xbcd907-3B.2 (LOD>3) {9925} and microsatellite markers Xgwm533 and Xgwm493 {0175}.  This QTL explained 41.6 % of the variation in the cross Sumai3/Stoa {0175}.

 

QTL : 

Two additional QTL for resistance to Fusarium graminearum were identified in the cross Sumai3/Stoa {0175}.  The QTL on 4BS was associated with Xwg909 and the QTL on 6BS was associated with Xbarc101 and Xbcd1383 {0175}.  The QTL associated with markers Xgwm493/Xgwm533 (explaining 24.8 % of the variation), and Xbarc101/Xbcd1383 were also identified in a RIL population from the cross ND2603/Butte 86 {0175}.  In addition, one QTL on chromosome 3AL associated with Xbcd941 and one on chromosome 6AS associated with XksuH4 were identified in RILs from the cross ND2603/Butte 86 {0175}.

 

The resistance QTL on chromosome 3BS associated with Xgwm493 and Xgwm533 was also identified in a DH population of the cross CM-82036 (a Sumai 3 derivative) x Remus {0240}.  Additional QTL in this cross were detected on chromosome 5A, associated with Xgwm293 and Xgwm304, and possibly on 1B, associated with Glu-B1 {0240}.

For review see {0283}.

 

 

Reaction to Heterodera avenae

Cre8 {0220}.

CreF {0012,0138}.  

6B {0220}.  [On basis of linkage with Xbcd1 and Xcdo347].

 

 

v: 

Barunga {0220}; Festiguay {0012,0220}; Frame {0138,0220};  Molineaux {0220}.    ma:  Associated with a unique allele when probed with CDO367 which hybridizes to group 7L {1059}.

 

 

Reaction to Mayetiola destructor

H21.

ma: 

A STS primer set SJ07 was developed to identify 2RL, and hence H21 {0233}.

 

H30 {0256}.

Derived from Ae. triuncialis  {0256}.

 

 

v: 

TR-3531 {0256}.

al: 

Ae. triuncialis {0256}. 

                                               

Reaction to Mycosphaella graminicola

Stb5. 

ma: 

Rc3 - 6.6cM- Stb5 - ­7.2cM - Xgwm44/Centromere {0186}.

 

Reaction to Phaeosphaeria nodorum

SnbTM.

ma: 

UBC521650 -  15 cM – SnbTM – 13.1 cM – RC37510       {0212}. UBC521650 was converted to a SCAR marker {0212}.

 

Reaction to Pseudocercosporella herpotrichoides

Pch1.

7A {0224}.

tv: 

Five recombinant lines {0224}.

                               

Reaction to Puccinia graminis tritici

Sr22.

ma: 

Add:  'See also {0158}.'

 

Sr26.

ma: 

Can be detected with several RFLP probes {0138}.

 

Sr31.   

1BL.1RS:

v: 

Cougar {0267}; Rawhide (heterogeneous) {0267}.

 

 

Sr36.   

 

v: 

GK Kincső {0235}.

 

Sr38 {062}.

Derived from Ae. ventricosa.  See Reaction to P. recondita tritici Lr37 and P. striiformis tritici Yr17 for details. 

 

 

v:

Moisson derivatives Mx12 and Mx22 also carry Sr38 {0213}.

 

Reaction to Puccinia recondita tritici

Lr10.    

 

v: 

Scout 66 {02101}.

 

Lrk10. A receptor-like kinase. The locus Xsfr1(Lrk10)-1A, detected by the probe Lrk10, is completely linked with Lr10 in chromosome 1AS {356}.  Lrk10 encodes a receptor-like kinase with extracellular and kinase domains {0297}. Using probe pLrk10-A, developed from the extracellular domain, 6 homologues were found in chromosomes 1A (1), 1B (3) and 1D (2) as well as group 1 chromosomes of T. monococcum, Ae. tauschii and barley {0296,0294}. Probes based on the kinase domain identified further homologues in chromosomes 3AS and 3BS as well as the corresponding regions in rice and maize {0294}. Both orthologous and paralogous evolution were suggested.

 

Lr11.     

 

v: 

Karl 92 Lr3 Lr10 {02101}.

 

Lr12.   

 

v: 

AC Domain Lr10 Lr34{0228}.

 

Lr13.   

 

v: 

Hereward {0288}; Moulin {0288}; Pastiche {0288}.  BH1146 Lr34 {0268}.

 

Lr16.   

 

v: 

Arapahoe {02101}; Brule {02101}; Millenium {02101}; Redland {02101}; Vista {02101}.

 

Lr17b.   

2A {1350}. 

v: 

Brock {0260}; Tarso {0229}; Norman {1350}.

 

Lr19.

7BL.

v: 

4 further derivatives of 88M22-149 {0232}.

 

 

ma:

An STS marker closely linked and distal to Lr19 was developed from an AFLP {0273}.

 

Lr21.  

 

v: 

McKenzie {0228}; WGRC2 = TA1649/3* Wichita {0299}; WGRC7 = Wichita/TA1649//2*Wichita {0299}.  

 

 

dv: 

Aegilops squarrosa accessions: RL5289 = TA1599 {1241}; TA1649 {0299}; TA1691 {0299}; TA2378 {0299}; TA2470 {0299}; TA2483 {0299}; TA2495 {0299};  TA2527 {0299}; TA2528 {0299}.   

 

ma: 

 All members of the Lr21 family carry a STS derivative of ksuD14-1D that has a resistance gene analogue structure {0299}.

 

Lr23.   

 

v: 

Cranbrook {02119}.

 

Lr26.   

1BL.1RS:

v:

Cougar {0267}; Rawhide (heterogeneous) {0267}.

 

Lr34.

 

v:

Westphal 12 {0268}; BH1146 Lr13 {0268}.

 

Lr37 {062}.

2AS {062}.

Derived from Ae. ventricosa .

 

VPM1 and derivatives:        2AS {062}  = 2AL.2AS-2NvS {0213}.

 

 

i: 

Tc*8/VPM1 {316}; Various NILs listed in {0213}.

 

 

v: 

Hyak {021}; Madsen {020}; Rendezvous {062}; VPM1 {062}.  See also Reaction to P. striiformis tritici Yr17.

 

Moisson derivatives:          Lr {113}.                2AS = 2AL.2AS-2NvS {113}.

 

 

ad: 

Moisson + 6Nv = 6NvS.6NvL-2NvS or 6NvL.6NvS-2NvS {0009}.

 

 

v: 

Mx12 {0213}; Mx22 {0213}.

 

ma:

(relevant to both groups of derivatives). PCR primers designed from marker csVrga1D3’ {0183} producing a 383 bp product allows detection of the 2NvS segment {0213}. See also: Reaction to P. striiformis tritici Yr17.

Lr37 can be recognised in seedling tests at low temperatures (17C) and is effective in adult plants under field conditions.

 

Lr39 {02100}.   

2DS {02100}.   

Derived from Aegilops tauschii {02100}.   

 

 

v: 

TA4186 = TA1675*2/Wichita {02100}.   

 

 

dv: 

Aegilops tauschii TA 1675 {02100}.   

 

ma: 

10.7 cM distal to Xgwm210-2D {02100}.

 

Lr41.   

 

v:

Thunderbolt {02100}.

                                                                                .

Lr50 {0221}.

2BL {0221} [Based on linkage with SSR markers].

 

 

v: 

WGR36 = TAM107*3/TA870//Wichita {0221}.

 

 

tv: 

T. armeniacum TA870 {0221}.

 

LrTm {0277}.

 

dv:

T. monococcum.

 

ma:

Linked to microsatellite locus Xgwm136 {0277}.

 

LrTr {0227].   

 

v: 

Aegilops triuncialis derivatives {0227}.   

 

 

ad: 

WL711 BC2F5 addition lines {0227}.   

 

 

al: 

Aegilops triuncalis Acc. 3549 {0227|. 

 

ma: 

  Lines with LtTr possessed a homologue of Xgwm368-4B {0227}.

 

Genotype lists:  Australian wheats {0288}, European wheats {0229,0260,0288}.

 

Reaction to Puccinia striiformis tritici

Yr9.   

1BL.1RS: 

v: 

Cougar {0267}; Rawhide (heterogeneous) {0267}.

 

Yr10.

YrVav {0262}.

v: 

QLD709 = Janz*2/T. Vavilovii {0262}. 

 

 

tv:  

T. vavilovii AUS 22498 {0262}.

 

ma: 

A SCAR marker was described in {0261}.  QLD709 and T.spelta 415, both with white glumes, failed to amplify the SCAR sequence, but bot5h carried unique alleles at the Gli-B1 and XPsp3000 loci {0262}.  These differed from the Moro source of Yr10}  Yr10 –1.5+-0.9cM -Gli-B1- 1.1+-0.8cM – XPsp3000 {0262}.

 

Yr17 {062}.

2AS {062}.

See reaction to P. recondita tritici Lr37 for details.

 

 

v: 

Genotype list in {02105}.

 

 

v:

Arche {0044}, Balthazar {0044}, Brigadier {0044}, Cordial {0044}, Eureka {0044}, Hussar {0044},  Lynx {0044},  Pernel {0044},  Renan {0044}.

 

ma: 

Yr17 was closely linked to the SCAR marker SC-Y15, developed from RAPD marker OP-Y15580, and to Xpsr150-2Nv {0044}.

 

Yr26.  

 1BS {0285}.

The earlier reported location  opf 6AL.6VS {617} is not correct.

 

 

v: 

Wheat-Haynaldia villosa  lines R43, R55, R64 and R77 {0285}.   

 

 

tv: 

T. turgidum Gamma 80-1.   

 

ma: 

Yr26 – 1.9cM – Xgwm11-1B/Xgwm18-1B {0285}.  

 

Yr28.   

ma: 

Linkage with Xmwg634-4D {1377}.

 

YrH52.  

QTL: 

In the ITMI mapping population, QTLs were found in 2BS, 7DS, and possibly 5A, 3D and 6D {0287}.

 

In Camp Remy/Michigan Amber, QTLS were found in 2AL and 2BL {0287}.

 

 

Reaction to Pyrenophora tritici repentis

  1. Resistance to chlorosis induction

QTsc.ndsu-1A.    Add {0040,0264}’ to the references for QTL and the marker association.

 

QTsc.ndsu-4A.    Add to: v:  In W-7976/Trenton resistance was contributed by W-7976 {0264}.     

ma: Add:  ‘In W-7976/Trenton there was association with Xwg622-4A{0264} and minor QTLs in chromosomes 1AL, 7DS, 5AL and 3BL were associated with resistance in adult plants {0264}.

 

Reaction to Sitodiplosis mosellana

Insect pest:  Orange blossum wheat midge,  Wheat midge

 

Sm1 {0218}.          2B{0218}.              v:  Augusta {0218}; Blueboy {0218}; Caldwell {0218}; Clark {0218}; FL302{0218}; Howell {0218} Knox 62 {0218}; Mono {0218}; Seneca {0218}.             ma:  Linked to a SCAR marker {0223}. 

 

Reaction to Ustilago tritici

Add:  Resistance to race 19 was associated with chromosome 6A of Cadet, Kota, Thatcher and TD18 {0208}. In the case of Cadet, resistance was localized to 6AS {0208}.

 

Resistance to colonization by Eriophyes tulipae

Curl mite colonization

Cmc1.

 

v: 

Norstar derivative {0222}. 

 

Cmc3 {0222}.

1A = 1AL.1RS.

 

 

v: 

Amigo; TAM107.  KS96GRC40 Cmc4 {0222}.

 

Cmc4 {0222}.

6DS {0222}.

v: 

KS96WRC40 Cmc3 {0222}.

 

 

dv: 

Aeg. Tauschii (accession no {0222}.

                                               

                                                               

Genetic Linkages

To the references in the first paragraph in the 2001 Supplement, add: ‘187’.

 

Chromosome 4D

4DS

                ms4         -               centromere            I               {0293}

 

 

Summary table 1

Add:

Ar

Alkylresocinols content of grain

Eet

Ear emergence time

El

Ear length

Flt

Flowering time

Gnu

Grain number

Gpp

Green plant percentage

Gwe

Grain weight/ear

Ler

Leaf erectness

Pdc              

Pyruvate decarboxylase

Pdl

Peduncle length

Raw

Red awn colour

Tgw

1000-grain weight

Win

Winter hardiness

 

References

Amendments.

1350.       Singh D, Park RF, Bariana HS & McIntosh  2001  Chromosome location and linkage studies of leaf rust resistance gene Lr17b in wheat cultivar Harrier.  Plant Breeding 120: 7-12.

0107.       Jahier J, Abιlard P, Tonguy AM, Dedryver F, Rivoal R, Khatkar R & Bariana HS  2001  The Aegilops ventricosa segment on chromosome 2AS of the wheat cultivar ‘VPM1’ carries the cereal cyst nematode gene Cre5.  Plant Breeding 120 :  125-128.

0117.       Shariflou MR, Hassani ME & Sharp PJ  2001.  A PCR-based DNA marker for detection of mutant and normal alleles of the Wx-D1 gene of wheat.  Plant Breeding 120: 121-124..

0138.       Ogbonnaya FC, Seah S, Delibes A, Jahier J, Lσpez-Braρa I, Eastwood RF & Lagudah ES.  2001  Molecular-genetic characterization of a new nematode resistance gene in wheat.  Theoretical & Applied Genetics 102: 623-629.

0163.       2002.  Euphytica 123: 21-29.

0175.       Anderson JA, Stack RW, Liu S, Waldron BL, Fjeld AD, Coyne C, Moreno-Sevilla B, Mitchell Fetch J, Song QJ, Cregan PB & Frohberg RC  2001  DNA markers for Fusarium head blight resistance QTLs in two wheat populations. Theoretical & Applied Genetics 102: 1164-1168.

0186.       Arraino LS, Worland, Ellerbrook C & Brown JKM  Chromosomal location of a gene for resistance to septoria tritici blotch (Mycosphaerella graminicola) in a hexaploid wheat ‘Synthetic 6X’.  Theoretical & Applied Genetics 103: 758-764.

0188.       McIntosh RA, Devos KM, Dubcovsky J & Rogers J  2001  Catalogue of gene symbols for wheat:  2001 Supplement.  Annual Wheat Newsletter 47: 333-354.

0197        Liu ZY, Sun QX, Ni ZF, Nevo E & Yang TM  2002  Molecular characterization of a novel powdery mildew resistance gene Pm30 in wheat originating from wild emmer.  Euphytica 123: 21-29.

 

New.

0201.       Ayala L, van Ginkel M, Khairallah M, Keller B & Henry M  2001  Expression of Thinopyrum intermedium-derived barley yellow dwarf virus resistance in elite bread wheat backgrounds.  Phytopathology 91: 55-62.

0202.       Košner J & Pαnkovα K  1999  Impact of homoeologous group 5 chromosomes with different vrn loci on leaf size and tillering.  Czech Journal of Genetics & Plant Breeding 35: 65-72.

0203.       Morris CF, King GE, Allan RE & Simeone MC  2001  Identification and characterization of near-isogenic hard and soft hexaploid wheats.  Crop Science 41: 211-217.

0204.       Morris CF, Lillemo M, Simeone MC, Giroux MJ, Babb SL & Kidwell KK  2001  Prevalence of puroindoline grain hardness genotypes among historically significant North American spring and winter wheats.  Crop Science: 218-228.

0205.       Lillemo M & Morris CF  2000  A leucine to proline mutation in puroindoline b is frequently present in hard wheats from Northern Europe.  Theoretical & Applied Genetics 100: 1100-1107.

0206.       Martin JM, Frohberg RC, Morris CF, Talbert LE & Giroux MJ  2001  Milling and bread baking traits associated with puroindoline sequence type in hard red spring wheat.  Crop Science 41: 228-234.

0207.       Krishnamurthy K & Giroux MJ  2001  Expression of wheat puroindolime genes in transgenic rice enhances grain softness.  Nature Biotechnology 19: 162-166.

0208.       Knox RE & Howes NK  1994  A monoclonal antibody chromosome marker analysis used to locate a loose smut resistance gene in wheat chromosome 6A.  Theoretical & Applied Genetics 89: 787-793.

0209.       Quick JS, Ellis GE, Normann RM, Stramberger JA, Shanahan JF, Peairs FB, Rudolph JB & Lorenz K  1996  Registration of ‘Halt’ wheat.  Crop Science 36: 210.

0210.       Toit F du  1989  Inheritance of resistance in two Triticum aestivum lines to Russian wheat aphid (Homoptera: Aphidae).  Journal of Economic Entomology 82: 1251-1253.

0211.       Liu XM, Smith CM, Gill BS & Tolmay V  2001  Microsatellite markers linked to six Russian wheat aphid resistance genes in wheat.  Theoretical & Applied Genetics 102: 504-510.

0212.       Cao W, Hughes GR, Ma H & Dong Z  2001  Identification of molecular markers for resistance to Septoria nodorum blotch in durum wheat.  Theoretical & Applied Genetics 102: 551-554.

0213.       Seah S, Bariana H, Jahier J, Sivasithamparum K & Lagudah ES  2001  The introgressed segment carrying rust resistance genes Yr17, Lr37 and Sr38 in wheat can be assayed by a cloned disease resistance gene-like sequence.  Theoretical & Applied Genetics 102: 600-605.

0214.       Gill KS & Gill BS  1996  A PCR-based screening assay of Ph1, the chromosome pairing regulator gene of wheat.  Crop Science 36: 719-722. 

0215.       Dudnikov AJ, Gorel FL & Berdnikov VA  2001  Chromosomal location of histone H1 genes in common wheat.  Cereal Research Communications.  In press.

0216.       Nasuda S, Liu Y, Sakamoto A, Nakayama T, Iwabuchu M & Tsunewaki K  1993  Chromosmal locations of the genes for histones and a histone-binding protein family HBP-1 in common wheat.  Plant Molecular Biology 22: 603-614.

0217.       Segal G, Liu B, Vega JM, Abbo S, Rodova M & Feldman M  1997  Identification of a chromosome-specific probe that maps within the Ph1 deletions in common and durum wheat.  Theoretical & Applied Genetics 94: 968-970.

0218.       McKenzie Lamb Aung Wise Barker & Orfert  2002  Inheritance of resistance to wheat midge, Sitodiplosis mosellana, in spring wheat.  Manuscript.

0219.       Roberts MA, Reader SM, Dalgliesh C, Miller TE, Foote TN, Fish LJ, Snape TW & Moore G  1999  Induction and characterization of ph1 wheat mutants.  Genetics 153: 1909-1918.

0220.       Williams K  2001  Personal communication.

0221.       Brown-Guerdira G  2001  Personal communication.

0222.       Brown-Guerdira G  2001  Personal communication.

0224.       Huguet-Robert V, Dedryver F, Rφder MS, Korzun V, Abιlard P, Tanguy AM, Jaudeau B & Jahier J  2001  Isolation of a chromosomally engineered durum wheat line carrying the Aegilops ventricosa Pch1 gene for resistance to eyespot.  Genome 44: 345-349.

0225.       Ayala L, Henry M, Gonzαlez-de-Leσn D, Van Ginkel M, Mujeeb-Kazi A, Keller B & Khairallah M  2001  A diagnostic molecular marker allowing the study of Th. intermedium-  derived resistance to BYDV in bread wheat segregating populations.  Theoretical & Applied Genetics 102: 942-949.

0226.       Kato K, Nakamura W, Tabiki T &  Miura H  2001  Detection of loci controlling seed dormancy on group 4 chromosomes of wheat and comparative mapping with rice and barley genomes.  Theoretical & applied Genetics 291: 980-985.

0227.       Aghaee-Sarbarzeh M, Harjit-Singh & Dhaliwal HS  2001  A microsatellite marker linked to leaf rust resistance transferred from Aegilops triuncalis into hexaploid wheat.  Plant Breeding 120; 259-261.

0228.       Kolmer JA  2001  Physiologic specialization of Puccinia tritica in Canada in 1998.  Plant disease 85: 155-158.

0229.       Park RF, Goyeau H, Felsenstein FG, Bartoš P & Zeller FJ  2001  Regional phenotypic diversity of Puccinia triticina and wheat host resistance in western Europe, 1995.  Euphytica 122: 113-127.

0230.       Yang TZ, Zhang XK, Liu HW & Wang ZH  1998  Chromosomal arm location of a dominant dwarfing gene Rht21 in XN004 of common wheat.  Proceedings of the 8th International Wheat Genetics Symposium, Beijing, 1993 (Li ZS & Xin Zy eds): 839-842.

0231.       Bφrner A & Worland AJ 2001  Does the Chinese dwarf wheat variety ‘XN004’ carry Rht21?  Cereal research Communications (In press).

0232.       Marais GF, Marais AS & Groenewald JZ  2000  Evaluation and reduction of Lr19-149, a recombined form of the Lr19 translocation of wheat.  Euphytica 121: 289-295.

0233.       Seo YW, Jang CS & Johnson JW  2001  Development of AFLP and STS markers for identifying wheat-rye translocations possessing 2RL.  Euphytica 121: 279-287.

0234.       Yanagasawa T, Kiribuchi-Otobe C & Yoshida H  2001  An alanine to threonine change in the Wx-D1 protein reduces GBSS I activity in a waxy wheat mutant.  Euphytica 121: 209-214.

0235.       Csőcz M, Bartoš P & Mesterhαzy Α  2001  Identification of stem rust resistance gene Sr36 in the wheat cultivar GK Kincső and its derivatives.  Cereal Research Communications 29: 267-273.

0236.       Ammiraju JSS, Dholakia BB, Santra DK, Singh H, Lagu MD, Tamhankar SA, Dhaliwal HS, Rao VS, Gupta VS & Ranjekar PK  2001  Identification of inter simple sequence repeat (ISSR) markers associated with seed size in wheat. Theoretical & Applied Genetics 102: 726-732.

0237.       Ammiraju JSS, Dholakia BB, Jawdekar G, Santra DK, Gupta VS, Rφder MS, Singh H, Lagu MD, Dhaliwal HS, Rao VS, & Ranjekar PK  2001  Inheritance and identification of DNA markers associated with yellow berry tolerance in wheat (Triticum aestivum L.). Euphytica. In press.

0238.       Harker N, Rampling LR, Shariflou MR, Hayden MJ, Holton TA, Morell MK, Sharp PJ, Henry RJ, Edwards KJ  2001  Microsatellites as markers for Australian wheat improvement.  Australian Journal of Agricultural Research 52: 1121-1130.

0239.       Cregan P  2002  Personal Communication.

0240.       Buerstmayr H, Lemmens M, Hartl L, Doldi L, Steiner B, Stierschneider M & Ruckenbauer P  2001  Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat. I. Resistance to fungal spread (Type II resistance). Theoretical & Applied Genetics. In press.

0241.       Campbell KG, Finney PL, Bergman CJ, Gualberto DG, Anderson JA, Giroux MJ, Siritunga D, Zhu JQ, Gendre F , Roue C, Verel A & Sorrells ME  2001  Quantitative trait loci associated with milling and baking quality in a soft x hard wheat cross. Crop Science 41: 1275-1285.

0242.       Chalmers KJ, Campbell AW, Kretschmer J, Karakousis A, Henschke PH, Pierens S, Harker N, Pallotta M, Cornish GB, Shariflou MR, Rampling LR, McLauchlan A, Daggard G, Sharp PJ, Holton TA, Sutherland MW, Appels R & Langridge P  2001  Construction of three linkage maps in bread wheat, Triticum aestivum.  Australian Journal of Agricultural Research 52: 1089-1119.

0243.       Chebotar SV, Korzun VN & Sivolap YM  2001  Allele distribution at locus WMS261 marking the dwarfing gene Rht8 in common wheat cultivars of southern Ukraine. Russian Journal of Genetics 37: 894-898.

0244.       Chee PW, Elias EM, Anderson JA & Kianian SF  2001  Evaluation of a high grain protein QTL from Triticum turgidum L. var. dicoccoides in an adapted durum wheat background. Crop Science 41: 295-301.

0245.       Cloutier S, Rampitsch C, Penner GA & Lukow OM  2001   Cloning and expression of a LMW-i glutenin gene. Journal of Cereal Science 33: 143-154.

0246.       Galiba G, Kerepesi I,  Vagujfalvi A, Kocsy G, Cattivelli L, Dubcovsky J, Snape JW & Sutka J  2001  Mapping of genes involved in glutathione, carbohydrate and COR14b cold induced protein accumulation during cold hardening in wheat. Euphytica 119: 173-177.

0247.       Gill KS & Sandhu D  2001  Candidate-gene cloning and targeted marker enrichment of wheat chromosomal regions using RNA fingerprinting - differential display. Genome 44: 633-639.

0248.       Rodriguez Milla MA & Gustafson JP  2001  Genetic and physical characterization of chromosome 4DL in wheat. Genome 44: 883-892.

0249.       Corona V, Gazza L, Boggini G & Pogna NE  2001  Variation in friabilin composition as determined by A-PAGE fractionation and PCR amplification, and its relationship to grain hardness in bread wheat. Journal of Cereal Science 34: 243-250.

0250.       Khlestkina EK, Pestsova EG, Rφder MS & Bφrner A  2001  Molecular mapping, phenotypic expression and geographical distribution of genes determining anthocyanin pigmentation of coleoptiles in wheat (Triticum aestivum L.).  Theoretical & Applied Genetics. In press.

0251.       Rousset M, Brabant P,  Kota RS, Dubcovsky J & Dvorak J  2001  Use of recombinant substitution lines for gene mapping and QTL analysis of bread making quality in wheat.  Euphytica 119: 81-87.

0252.       Sandhu D, Champoux JA, Bondareva SN & Gill KS  2001  Identification and physical localization of useful genes and markers to a major gene-rich region on wheat group 1S chromosomes. Genetics 157: 1735-1747.

0253.       Torp AM, Hansen AL & Andersen SB  2001  Chromosomal regions associated with green plant regeneration in wheat (Triticum aestivum L.) anther culture . Euphytica 119: 377-387.

0254.       Wang H-J, Huang XQ, Rφder MS & Bφrner A  2001  Genetic mapping of loci determining long glumes in the genus Triticum. Euphytica. In press. 

0255.       Bφrner A, Schumann E, Fόrste A, Cφster H, Leithold B, Rφder MS & Weber W.E.  2001  Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.).  Theoretical and Applied Genetics. In press.

0256.       Delibes A  2002  Personal communication.

0257.       Hsam SLK, Huang XQ & Zeller  2001  Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em. Thell.) 6. Alleles at the Pm5 locus.  Theoretical & Applied Genetics 102: 127-133.

0258.       Huang XQ, Wang LX, Xu MX & Rφder M  2002  Microsatellite mapping of the wheat powdery mildew resistance gene Pm5e in common wheat (Triticum aestivum L.).  Personal communication.

0259.       Huang XQ, Hsam SLK & Zeller  2000  Chromosomal location of two novel genes for resistance to powdery mildew in Chinese landraces (Triticum aestivum L. em. Thell.). Journal of Genetics & Breeding 54: 311-317. 

0260.       Singh D, Park RF & McIntosh RA  2001  Postulation of leaf (brown) rust resistance genes in 70 wheat cultivars grown in the United Kingdom.  Euphytica 120: 205-215.

0261.       Frick MM, Hucl R, Nykiforuk CL, Conner RL, Kuzyk A & Laroche A  1998  Molecular characterisation of a wheat stripe rust resistance gene in Moro wheat.  In: Proceedings 9th International Wheat Genetics Symposium, Saskatoon, Canada (Slinkard AE ed.) Vol 3 pp 181-182.

0262.       Bariana HS, Brown GN, Ahmed NU, Khatkar S, Conner RL, Wellings CR, Haley S, Sharp PJ & Laroche A  2002  Characterisation of Triticum vavilovii-derived stripe rust resistance using genetic, cytogenetic and molecular analyses and its marker-assisted selection.  Theoretical & Applied Genetics 104: 315-320.

0263.       Ciaffi M, Paolacci AR, Dominici L, Tanzarella OA & Porceddu E  2001  Molecular characterization of gene sequences coding for protein disulphide isomerase (PDI) in durum wheat (Triticum turgidum ssp durum).  Gene 265: 147-156.

0264.       Effertz RJ, Anderson JA & Francl LJ  2001  Restriction fragment length polymorphism mapping of resistance to two races of Pyrenophora tritici repentis in adult and seedling wheat.  Phytopathology 91: 572-578.

0265.       Faris J, Sirikhachornkit A, Haselkorn R, Gill BS, Gornicki  2001  Chromosome mapping and phylogenetic analysis of the cytosolic acetyl-CoA carboxylase loci in wheat.  Molecular Biology & Evolution 18: 1720-1733.

0266.       Li WL, Faris JD, Muthukrishnan S, Liu DJ, Chen PD & Gill BS  2001  Isolation and characterization of novel cDNA clones of acidic chitinases and beta-1,3-glucanases from wheat spikes infected by Fusarium graminearum.  Theoretical & Applied Genetics 102: 353-362.

0267.       Baenziger PS, Shelton DR, Shipman MJ & Graybosch RA  2001  Breeding for end-use quality: Reflections on the Nebraska experience.  Euphytica 119: 95-100.

0268.       Kolmer JA & Liu JQ  2001  Simple inheritance of partial resistance to leaf rust in two wheat cultivars.  Plant Pathology 50: 546-551.

0269.       Nachit MM, Elouafi I, Pagnotta MA, El Saleh A, Iacono E, Labhilili M, Asbati A, Azrak M, Hazzam H, Benscher D, Khairallah M, Ribaut JM, Tanzarella OA, Porceddu E & Sorrells ME  2001  Molecular linkage map for an intraspecific recombinant inbred population of durum wheat (Triticum turgidum L. var. durum).  Theoretical & Applied Genetics 102: 177-186.

0270.       Peng JH, Fahima T, Rφder MS, Huang QY, Dahan A, Li YC, Grama A & Nevo E  2000   High-density molecular map of chromosome region harboring stripe-rust resistance genes YrH52 and Yr15 derived from wild emmer wheat, Triticum dicoccoides.  Genetica 109: 199-210.

0271.       Sasanuma T  2001  Characterization of the rbcS multigene family in wheat: subfamily classification, determination of chromosomal location and evolutionary analysis. Molecular Genetics & Genomics 265: 161-171.

0272.       Chantret N, Mingeot D,Sourdille P, Bernard M, Jacquemin JM & Doussinault G  2001  A major QTL for powdery mildew resistance is stable over time and at two development stages in winter wheat.  Theoretical & Applied Genetics 103: 962-971.

0273.       Prins R, Groenewald JZ, Marais GF, Snape JW & Koebner RMD  2001  AFLP and STS tagging of Lr19, a gene conferring resistance to leaf rust in wheat.  Theoretical & applied Genetics 103: 618-624.

0274.       Sutka J  2001  Genes for frost resistance in wheat.  Euphytica 119: 167-172.

0275.       Tsujimoto H, Yamada T, Hasegawa K, Usami N, Kojima T, Endo TR, Ogihara Y & Sasakuma T   2001  Large-scale selection of lines with deletions in chromosome 1B in wheat and applications for fine deletion mapping.  Genome 44: 501-508.

0276.       Varshney RK, Prasad M, Roy JK, Rφder MS, Balyan HS, Gupta PK  2001  Integrated physical maps of 2DL, 6BS and 7DL carrying loci for grain protein content and pre-harvest sprouting tolerance in bread wheat. Cereal Research Communications 29: 33-40.

0277.       Vasu K, Harjit-Singh, Singh S, Chhuneja P & Dhaliwal HS  2001  Microsatellite marker linked to a leaf rust resistance gene from Triticum monococcum L. transferred to bread wheat.  Journal of Plant Biochemistry & Biotechnology 10: 127-132.

0278.       Yan L & Bhave M  2000   Sequences of the waxy loci of wheat: Utility in analysis of waxy proteins and developing molecular markers. Biochemical Genetics 38: 391-411.

0279.       Yan LL & Bhave M  2001  Characterization of waxy proteins and waxy genes of Triticum timopheevii and T. zhukovskyi and implications for evolution of wheat.  Genome 44: 582-588.

0280.       Zanetti S, Winzeler M, Feuillet C, Keller B & Messmer M  2001  Genetic analysis of bread-making quality in wheat and spelt. Plant Breeding  120: 13-19.

0281.       Snape JW  2002  Personal communication.

0282.                       Iwaki K, Nakagawa K & Kato K  2001  The possible candidate for Vrn-B1 in wheat, as revealed by monosomic analysis of Vrn genes carried by Triple Dirk (B), the former Vrn2.  Wheat Information Service 92: 9-11.

0283.       Kolb FL, Bai GH, Muehlbuer GJ, Anderson JA, Smith KP & Fedak G  2001  Host plant resistance genes for Fusarium head blight: mapping and manipulation with molecular markers.  Crop Science 41: 611-619.

0284.       Liu SX, Griffey CA & Saghai-Maroof MA  2001  Identification of molecular markers associated with adult plant resistance to powdery mildew in common wheat cultivar Massey.  Crop Science 41: 1268-1275.

0285.       Ma JX, Zhou RG, Dong YS, Wang LF, Wang XM & Jia JZ  2001  Molecular mapping and detection of the yellow rust  resistance gene Yr26 in wheat transferred from Triticun turgidum L. using microsatellite markers.  Euphytica 120: 219-226.

0286.       Mohle V, Hsam SLK, Zeller FJ & Wenzel G  2001  An STS marker distinguishing the rye-derived powdery mildew resistance alleles at the Pm8/Pm17 locus of common wheat.  Plant Breeding 120: 448-450.

0287.       Boukhatem N, Baret PV, Mingeot D & Jacquemin JM  2002.  Quantitative trait loci for resistance against yellow rust in two wheat-derived inbred wheat line populations.  Theoretical & Applied Genetics 104: 111-115.          

0288.       Singh D, Park RF & McIntosh RA  2001  Inheritance of seedling and adult plant resistance of selected Australian spring and English winter wheat varieties.  Plant Breeding 120: 503-507.

0289.       Qi LL & Gill BS  2001  High-density physical maps reveal the dominant gene Ms3 is located in a genomic region of low recombination in wheat and is not amenable to map-based cloning.  Theoretical & Applied Genetics 103: 998-1006.

0290.       Klindworth DL, Williams ND & Maan SS  2002  Chromosomal location of genetic male sterility genes in four mutants of hexaploid wheat.  Crop Science (in press).

0291.       Snape JW, Semikhodskii A, Fish L, Sarma RN, Quarrie SA, Galiba G & Sutka J   1997  Mapping frost tolerance loci in wheat and comparative mapping with other cereals.  Acta Agronomica Hungarica 45: 268-270.

0292.       Sutka J, Galiba G, Vagujfalvi A, Gill BS & Snape JW   1999   Physical mapping of the Vrn-A1 and Fr1 genes on chromosome 5A of wheat using deletion lines. Theoretical & Applied Genetics 99: 199-202.

0293.       Maan SS & Kianian SF  2001  Third dominant male sterility gene in common wheat.  Wheat Information Service 93: 27-31.

0294.       Feuillet C, Penger A, Gellner K, Mast A & Keller B  2001  Molecular evolution of receptor-like kinase genes in hexaploid wheat.  Independent evolution of orthologs after polyploidization and mechanisms of local rearrangements at paralogous loci.  Plant Physiology 125: 1304-1313.

0295        Morris CF  2002  Puroindolines: the molecular genetic basis of wheat grain hardness.  Plant Molecular Biology (in press)

0296.       Feuillet C & Keller B  1999  High gene density is conserved at syntenic loci of small and large grass genomes.  Proceedings of the National Academy of Sciences  U.S.A. 96: 8265-8270.

0297.       Feuillet C, Reuzeau C, Kjellbom P & Keller B  1998  Molecular characterization of a new type of receptor-like kinase (wlrk) gene family in wheat.  Plant Molecular Biology 37: 943-953.

0298.       Morris CF & Allan RE  2001  Registration of hard and soft near-isogenic lines of hexaploid wheat genetic stocks.  Crop Science 41: 935-936.

0299.       Huang L & Gill BS  2001  An RGA-like marker detects all known Lr21 leaf rust resistance gene family members in Aegilops tauschii and wheat. Theoretical & Applied Genetics 103: 1007-1013.

02100.     Raupp WJ, Sukhwinder-Singh, Brown-Guerdira & Gill BS  2001  Cytogenetic and molecular mapping of the leaf rust resistance gene Lr39 in wheat.  Theoretical & Applied Genetics 102: 347-352.

02101.     Watkins JE, Schimelfenikg J & Baenziger PS  2001  Virulence of  Puccinia triticina on wheat in Nebraska during 1997 and 1998.  Plant Disease 85: 159-164.

02102.     Singh RP, Huerta-Espino J, Rajaram S & Crossa J  2001  Grain yield and other traits of tall and dwarf isolines of modern bread and durum wheats.  Euphytica 119: 241-244.

02103.     Worland AJ, Sayers EJ & Korzun V  2001  Allelic variation at the dwarfing gene Rht8 locus and its significance in international breeding programs.  Euphytica 119:155-159.

02104.     Szunics L, Szunics Lu, Vida G, Bedφ Z & Svec M  2001  Dynamics of changes in the races and virulences of wheat powdery mildew in Hungary between 1971 and 1999.  Euphytica 119: 143-147.

02105.     Robert O, Dedryver F, Leconte M, Rolland B & de Vallavieille-Pope C  2000  Combination of resistance tests and molecular tests to postulate the yellow rust resistance gene Yr17 in bread wheat lines.  Plant Breeding 119: 467-472.